
MATH3001: Project in Mathematics

Automatic Puzzle Solving

Supervisor: Dr. Philip Walker

Ryan Chan

200850644

March 3, 2017

Abstract

Sudoku is a logic puzzle, which is played by many people around the world; 9 × 9 Sudoku

puzzles can be found in most newspaper puzzle pages and can be found easily by a quick In-

ternet search. According to a paper published in 2006, the earliest known examples of Sudoku

puzzles were published in 1979 in Dell Pencil Puzzles & Word Games. In this project, I will be

investigating the logic of Sudoku puzzles and will develop an algorithm to solve Sudoku puz-

zles of arbitrary size. This will involve some logical techniques to remove numbers as possible

candidates and also a backtracking algorithm to complete more advanced puzzles. We will only

consider Sudoku puzzles of size n, where n is a square number. There do exist Sudokus of other

sizes, such as 7×7 and 10×10, but the rules are different to a general Sudoku of size n, where n

is a square number. In addition to this, I will be developing and coding a Sudoku grid generator.

All code in this project will be written using Python 3 and can be found in the appendix.

Contents

1 Introduction 1

1.1 Number of different 9× 9 Sudoku grids . 1

1.2 Number of essentially different 9× 9 Sudoku grids 3

1.3 Uniqueness of 9× 9 Sudoku puzzles . 3

2 Notation and Definitions 4

3 An Algorithm to solve Sudoku puzzles logically 5

3.1 Simple Sudoku Puzzles . 5

3.2 Medium Sudoku Puzzles . 8

3.2.1 Peer-Checking . 8

3.2.2 The ‘Naked-Pairs’ technique . 9

3.2.3 Locked Candidates . 10

3.2.4 The Constraints Function . 11

4 An Algorithm to solve Sudoku puzzles using backtracking 12

4.1 Backtracking Algorithm . 12

4.2 The Solve Function . 14

5 Results 15

5.1 Testing the Algorithm . 15

5.2 Evaluation . 17

6 Sudoku Generator 18

6.1 Generating 9× 9 Sudoku grids . 18

6.2 Generating n× n Sudoku grids . 19

6.3 Generating puzzles using the Solver algorithm . 21

6.4 Constructing puzzles and difficulty of puzzles . 21

7 Conclusion 23

A Sudoku Solver: solver.py 26

B Sudoku Generator: generator.py 35

i

1 Introduction

A Sudoku puzzle is generally played on a 9× 9 board and is then subdivided into 3× 3 blocks,

as shown in figure 1.

Figure 1: A 9× 9 Sudoku grid

Felgenhauer and Jarvis (2006, p.15) state that “the aim of the solver is to complete the grid

by filling in a digit in every box in such a way that each row, each column, and each 3× 3 box

contains each of the digits 1 - 9 exactly once”. The definition of a Sudoku can be extended to

Sudokus of size n, which is an n× n board with
√
n×
√
n sub-grids.

1.1 Number of different 9× 9 Sudoku grids

The following calculation is based on the work by Felgenhauer and Jarvis (2006). The number

of possible 9× 9 Sudoku grids has been calculated to be the order of 1021. They calculated this

number by firstly labelling the blocks B1 - B9 as shown in figure 2.

Figure 2: A labeled 9× 9 Sudoku grid

1

By relabelling B1 into the block shown in figure 3, we reduce the number of grids by 9!. This

is because it is only required to find the number of Sudoku grids with this form and multiply

by 9!. We refer to a grid with this block as B1 to be in standard form.

Figure 3: A block in standard form

Felgenhauer and Jarvis (2006, p.16) note that “given blocks B2 and B3, there are other

possibilities B2′, B3′ say, such that the number of ways of completing blocks B1, B2 and B3

to full grids is the same as the number of ways of completing blocks B1, B2′ and B3′.” Their

method of counting the number of 9 × 9 Sudoku grids is to find the number of possibilities for

blocks B2 and B3, and then for these possibilities, they find the number of ways of completing

a grid from B1, B2 and B3 by brute force counting.

If B1 is in standard form, then the top row consists of {4, 5, 6} and {7, 8, 9} or a mixture of

them. Hence, there are 20 possibilities for the top rows of B2 and B3:

• {4, 5, 6}—{7, 8, 9}

• {4, 5, 7}—{6, 8, 9}

• {4, 5, 8}—{6, 7, 9}

• {4, 5, 9}—{6, 7, 8}

• {4, 6, 7}—{5, 8, 9}

• {4, 6, 8}—{5, 7, 9}

• {4, 6, 9}—{5, 7, 8}

• {5, 6, 7}—{4, 8, 9}

• {5, 6, 8}—{4, 7, 9}

• {5, 6, 9}—{4, 7, 8}

• {7, 8, 9}—{4, 5, 6}

• {6, 8, 9}—{4, 5, 7}

• {6, 7, 9}—{4, 5, 8}

• {6, 7, 8}—{4, 5, 9}

• {5, 8, 9}—{4, 6, 7}

• {5, 7, 9}—{4, 6, 8}

• {5, 7, 8}—{4, 6, 9}

• {4, 8, 9}—{5, 6, 7}

• {4, 7, 9}—{5, 6, 8}

• {4, 7, 8}—{5, 6, 9}

The top row {4, 5, 6}—{7, 8, 9} can be completed in (3!)6 number of ways, as the other row

must be {1, 2, 3}, and each set of three numbers can be written in 3! (= 6) ways. This is also true

for {7, 8, 9}—{4, 5, 6}. However, for the other 18 possibilities, as the top row of B2 is a mixture

of the sets {4, 5, 6} and {7, 8, 9}, the next following rows will also contain some permutation of

{1, 2, 3}. Hence there are 3× (3!)6 possibilities.

2

Therefore, in total there are (2× (3!)6) + (18× 3× (3!)6) = 2612736 possible arrangements,

given that the left-hand block is in standard form. Hence, the total number of possibilities for

the top three rows of a 9× 9 Sudoku grids is 9!× 2612736 = 948109639680.

Then by brute force counting, which is counting the number of ways that we can complete

the grid given B1, B2 and B3, Felgenhauer and Jarvis (2006, p.22) computed that in total, there

are 6670903752021072936960 ≈ 6.671× 1021 valid Sudoku grids.

1.2 Number of essentially different 9× 9 Sudoku grids

In the calculation above, solutions that could be transformed into another were counted as

different answers. However, the number of essentially different Sudoku grids can be calculated,

where “essentially different” means that we allow various possible symmetries. Russell and

Jarvis (2006, pp.54-55) note that the list of operations that we can perform to still get a valid

Sudoku grid is:

1. Relabel (i.e. permute) the 9 digits;

2. Permute the three vertical bands;

3. Permute the three horizontal bands;

4. Permute the three columns within a vertical band;

5. Permute the three rows within a horizontal band;

6. Any reflection or rotation.

A vertical band is defined as three blocks in a vertical 9 × 3 arrangement and a horizontal

band is defined as three blocks in a horizontal 3 × 9 arrangement. By using group theory,

Russell and Jarvis (2006) found that the number of essentially different Sudoku solutions is

2297902829591040 ≈ 2.297× 1015.

1.3 Uniqueness of 9× 9 Sudoku puzzles

Gordon Royle from The University of Western Australia (2017) has a collection of over 49151

examples of Sudokus with 17 clues with a unique solution, but has not found any fewer than

17. For several years, many have tried to find a 16 clue Sudoku puzzle with a unique solution,

however, McGuire et al. (2011, p.190) have shown by performing an exhaustive computer search

that there are no 16 clue puzzles with a unique solution.

3

2 Notation and Definitions

When referring to a cell on the board, (i, j) will be used to denote the cell at the intersection of

row i and column j. The mark-up of a cell is the list of possible numbers that cell can be.

We call the peers of a cell (i, j) the squares that share the same row i, or the same column

j, or the same
√
n ×
√
n sub-grid. For example, in a 9 × 9 Sudoku puzzle, a cell has 20 peers.

The shaded region in figure 4 shows the peers for cell (1, 1).

Figure 4: Peers of the cell (1,1)

In Python, a list of lists will be the data structure used to code a Sudoku puzzle and zeros

will be used to indicate empty cells. For example, figure 5 shows how a possible Sudoku puzzle

will be coded in Python.

[
[9,0,0,2,3,7,6,8,0],
[0,2,0,8,4,0,0,7,3],
[8,0,7,1,0,5,0,2,9],
[0,0,4,5,9,8,3,0,0],
[2,0,0,0,0,1,0,0,6],
[5,1,0,0,0,0,0,4,7],
[4,0,1,3,0,6,2,9,5],
[0,5,0,9,1,0,7,3,8],
[3,0,8,0,5,0,0,0,0]]

Figure 5: An example of a 9× 9 Sudoku puzzle coded in Python

4

3 An Algorithm to solve Sudoku puzzles logically

3.1 Simple Sudoku Puzzles

In this section, we develop an algorithm, which solves a set of Sudoku puzzles using logic rules.

Agnes M. Herzberg and M. Ram Murty (2009, p.708) state that every Sudoku square is a Latin

square, but not conversely because of the condition on the 3× 3 sub-grids. The Concise Oxford

Dictionary of Mathematics (2014) gives the definition of a Latin square as: “A square array of

symbols arranged in rows and columns in such a way that each symbol occurs exactly once in

each row and once in each column.” This gives a starting point to develop an algorithm to solve

elementary Sudoku puzzles by using this Latin square property of Sudokus and the mark-up of

the puzzle. Recall, the definition for the mark-up of a cell is the set of possible numbers that

the cell can contain. In Python, this can be coded using the function possibilities puzzle, which

can be found on pages 27 - 28 in the appendix. This loops through each cell in the puzzle and

marks up the cell if it is an unknown entry. This kind of mark-up only checks the values within

its row, column and square and eliminates them values as the possible candidates for a cell.

The cell order which the algorithm searches through the entries is shown in figure 6.

Figure 6: The cell order used to search for entries

To illustrate how this function works, the result of calling possibilities puzzle on the Sudoku

in figure 5 is shown in figure 7 (Python result on the right).

After marking up every cell in the puzzle, if the mark-up of a cell has only one possibility,

then that must be the solution for that particular cell. In terms of coding this into Python, the

algorithm must look for lists of length one, and if it finds these, then it will lock that value into

the cell. For example, in the Sudoku in figure 7, in cell (1, 2), the only possibility is 4, hence

that must be the answer in that cell. This was achieved by the definite answers function, which

is on page 28 on line 118 in the appendix. This loops through the entries of the puzzle to find

lists of length 1, and then locks in those answers.

5

[

[9,[4],[5],2,3,7,6,8,[1,4]],

[[1,6],2,[5,6],8,4,[9],[1,5],7,3],

[8,[3,4,6],7,1,[6],5,[4],2,9],

[[6,7],[6,7],4,5,9,8,3,[1],[1,2]],

[2,[3,7,8,9],[3,9],[4,7],[7],1,[5,8,9],[5],6],

[5,1,[3,6,9],[6],[2,6],[2,3],[8,9],4,7],

[4,[7],1,3,[7,8],6,2,9,5],

[[6],5,[2,6],9,1,[2,4],7,3,8],

[3,[6,7,9],8,[4,7],5,[2,4],[1,4],[1,6],[1,4]]]

Figure 7: The mark-up of the Sudoku in figure 5

For ‘easy’ Sudoku puzzles, using this technique and locking in the values at each step is

sufficient to find the solution. In order to do this, it is necessary to keep updating the Sudoku

grid, so that after an answer is locked in, it would then delete itself from the possibilities of

its peers. Although at this stage, it is possible to keep looping the function possibilities puzzle

and keep marking up the cell, more advanced techniques that will be developed later require

eliminating possibilities in different ways, and hence it is better to find the numbers that have

been locked in and remove it from its peers. This is coded in the update possibilities function,

which is shown on page 28 in the appendix. For example, in section 3.2.3, we implement the

‘naked pairs’ technique, which is a way to narrow down the candidates for a cell. If the algorithm

kept marking up the puzzle as it does with possibilities puzzle, then the candidates that were

eliminated previously would reappear again as potential solutions. This is because this function

only checks whether or not a possible candidate violates the rule that the digits 1 - 9 can only

appear once in a row, column or square. Hence, it is required that the update possibilities func-

tion is used instead to update the puzzle and possibilities puzzle is only called at the start to

mark-up the puzzle, so that the algorithm can begin solving it.

Figure 8 shows the step-by-step process of how this algorithm works so far.

By looking at each step, the algorithm first marks up the puzzle and then it looks for entries

with lists of length one. The algorithm then locks in the answers, and the updates the puzzle,

so it can loop again. For example, looking at step from 1 to 2, the cells (1, 2) and (1, 3) are [4]

and [5] respectively, and so the algorithm locks these answers in. Then at the next step, cell

(1, 9) is updated to [1], as 4 can no longer be a possibility in that cell, by the condition that a

row must only contain digits 1 - 9 exactly once. This occurs for all cells on the board and keeps

looping until a solution is found.

In order to stop the loop, the function is full is called, which is shown on page 26 and starts

on line 6. This checks whether the puzzle is full or not, and if it is, then the loop is over.

6

Figure 8: Step-by-step process of how the algorithm works so far

7

3.2 Medium Sudoku Puzzles

The algorithm that has been developed thus far can be summarised as follows:

After initially marking-up the puzzle,

1. Search for entries with only one possible answer.

2. For entries with only one possibility, lock in this number.

3. Update the possibilities in the cells.

4. If unsolved, start at 1. again.

This algorithm so far is sufficient to solve ‘easy’ Sudoku puzzles, where at each step there

are entries with only one possibility. However, the algorithm fails at more advanced Sudokus,

as it will reach a point in which there are no entries with only one possibility. For example, the

algorithm would fail for the uncompleted Sudoku puzzle in figure 9, as there is no entry with

just one possible candidate. This is because at this point, the algorithm only checks the Latin

square property (checking the row and column values) and the values in its
√
n ×
√
n sub-grid

to eliminate possible values. Hence, more subtle ways to eliminate possibilities are needed.

Figure 9: An example of where the algorithm will fail

3.2.1 Peer-Checking

Another way to find solutions is to look at the possibilities of the peers of a cell. Recall, we

define the peers of a cell as the squares that share either the same row, the same column or same
√
n×
√
n sub-grid. To use this to fill in more squares, we can look at the possibilities of a row,

column or square and count how many times a number comes up as a possibility. If a number

only comes up as a possibility once in a row, column or square, then that number must be the

solution in the cell where it occurred. For example, looking at the first column of the Sudoku

puzzle in figure 9, the number 5 only comes up as a possibility once at (7,1). By the condi-

tion that in each column, digits 1 - 9 must occur once, we can conclude that 5 must be in that cell.

8

To write this in Python, a dictionary will be used for the data structure that keeps count of

the numbers. In Python, a dictionary is an unordered set of key:value pairs. Here, the key will

denote a number between 1 and n, and the value will represent the number of times that candi-

date occurs in the row, column or square. For an n× n Sudoku, there will be 3n peer-checkers

(n rows, n columns and n
√
n×
√
n sub-grids). Each peer-checker initialises the dictionary:

{1:0, 2:0, 3:0, ..., n:0}

The function then loops through the possibilities in each cell of the row, column or square

and will count how many times a number occurs.

For example, applying this to the first column of the Sudoku in figure 9 would return the

dictionary:

{1:0, 2:0, 3:2, 4:4, 5:1, 6:0, 7:0, 8:3, 9:0}

Next, we follow the rule that if a key has value 1, then we put that candidate in the

square where it occurred as a possibility. So in this case, 5 has a value 1, and so the func-

tion will lock in the answer where that occurred, in cell (7, 1). After this, the function calls

update possibilities to remove 5 as a candidate in the unknown entries that share the same

row, column or square. This technique can be applied using the functions peer checker row,

peer checker col and peer checker square and we loop this function for each row, column and

square. The functions peer checker row, peer checker col and peer checker square can be found

in the appendix on pages 29 - 30.

3.2.2 The ‘Naked-Pairs’ technique

The following method is given by Davis (2011, p.35). A naked pair (or conjugate pair) is a pair

of sets containing the same two numbers that are in the same row, column or
√
n×
√
n sub-grid.

If a naked pair can be found, then we can remove them as possibilities from the rest of the row,

column or
√
n×
√
n sub-grid, depending where the pair occurred.

In the example in figure 10, there is a naked pair [3, 7] in the first column, which are high-

lighted by being in the grey cells. Hence 3 and 7 can be removed from the possibilities of the

cells that are in the same column, namely (2, 1) and (3, 1) in this case. Also note that in this

example there are other naked pairs that could be used to eliminate possibilities, such as the

naked pair [4, 7] in column 5 in order to remove the 7 in cell (2, 5).

Similarly, if there is a naked pair within a row or box, then the candidates in the naked

pair can be removed from the possibilities in the same row or box. The implementation of this

technique in Python can be found on pages 30 - 31 in the appendix. This method works because

the numbers in the naked pair must be in those two cells, and so it can be removed from the

possibilities of the other cells that share the same row, column or
√
n×
√
n sub-grid.

9

Figure 10: An example where the naked pairs technique can be used

3.2.3 Locked Candidates

If in a n× n Sudoku puzzle, a candidate can only appear in a row or column within a
√
n×
√
n

sub-grid, then that candidate is said to be locked. For example, in figure 11, 7 is a locked candi-

date in the top left sub-grid (shown in the grey cells), as it can only occur in the top row inside

its 3 × 3 sub-grid. As 7 has to be the top row and in the box, then it is possible to remove

this as possibility from the other unknown entries that are also in the top row. Hence, 7 can be

removed from cells (1, 5) and (1, 9).

Figure 11: An example where the locked candidate technique can be used

Similarly, in the fifth row, 8 and 9 are locked candidates (shown in the grey cells), so they

can be removed from the possibilities in cell (5, 3) and (5, 6).

This method works because if there is a locked candidate to be found in a row or column,

then as it has to appear in that row or column and in the
√
n×
√
n sub-grid, it cannot appear

in any of the other cells in that row or column.

10

The implementation of this method can be found on pages 31 - 33 in the appendix. To

generalise this method to Sudoku puzzles of size n, the function first counts the number of

occurrences of each candidate in an
√
n ×
√
n sub-grid. If the number of occurrences for a

candidate is between 2 and
√
n, then it is possible that the candidate could be locked. Next for

each of these candidates, it checks if they only occur in the same row or column; this is done by

calling the functions same col check and same row check, which are defined on page 31 in the

appendix. If they only occur in the same row or column, then they are locked and hence the

function will delete all other occurrences of the candidate from the row or column.

3.2.4 The Constraints Function

The constraints function is defined on page 33 in the appendix; it combines the techniques ex-

plained in this section. This loops these functions until the puzzle is either solved, or can no

longer fix anymore answers. It checks this by using the is full function defined on page 26 in

the appendix and by seeing if a change was made after applying the techniques. The constraints

function returns True if the puzzle is completed and False if no change was made and the

puzzle was not solved. Note that the function initially tries to only use the technique explained

in 3.1, and if it cannot lock any answers, then it will use the techniques in sections 3.2.1-3.2.3.

This is because if a puzzle can be solved by only using definite answers and update possibilities,

then the other functions will still be called and hence the algorithm will be less efficient. Thus,

to improve the solution times, it tries to lock down answers repeatedly before using the more

advanced techniques.

So far, the algorithm only consists of logical steps to lock answers down. In the next section,

this will be combined with a backtracking algorithm to solve harder Sudoku puzzles.

11

4 An Algorithm to solve Sudoku puzzles using backtracking

In section 3, we developed an algorithm that solves a set of Sudoku puzzles using logical steps

and some techniques. Many Sudoku puzzles can be solved in this way, however, this approach

does not always guarantee a solution will be found. To tackle this problem, one could attempt

to code more advanced techniques. Stuart (2015) gives a plethora of possible sophisticated

techniques, such as the X-Wing and Swordfish techniques. However, a criticism of this is that

this could take many more lines of code to implement. Moreover, we cannot be certain that by

adding these techniques that the algorithm will be able to solve every Sudoku puzzle.

Instead of coding up more sophisticated techniques, a backtracking algorithm or a brute

force search algorithm can be used to finish a puzzle. A brute force search would try all the

possible combinations of the possible numbers until it finds a valid solution. By using the

count brute force function in the code (defined on page 26 in the appendix), we are able to

count up the number of possibilities that we could possibly try in order to brute force search

for a solution. However, for complicated puzzles this number could be very large. For exam-

ple, figure 12 shows the result after applying the constraints function to a Sudoku puzzle, with

the numbers in blue being the numbers that have been locked in by the function. By multi-

plying the number of candidates that an unknown cell can have together (done by using the

count brute force function), we can see there are 779, 980, 467, 213, 434, 880, 000, 000 number of

possibilities we would need to go through to try and find the 1 unique solution of this puz-

zle. Hence, a backtracking algorithm is used instead to complete the Sudoku grid after initially

imposing constraints.

Figure 12: An example of a Sudoku puzzle that can’t be solved by applying constraints alone

4.1 Backtracking Algorithm

A Dictionary of Computer Science (2016) defines backtracking to be a “property of an algorithm

that implies some kind of tentative search for a goal, and the possibility that any search path

may turn out to be a dead end; the algorithm then retreats back down the search path to try

another path.” In the context of using this to complete a Sudoku grid, the algorithm will search

12

for a solution by making a guess in a cell, but if the guess is wrong, then it will go back and try

a different guess for that cell. The implementation of a backtracking algorithm is done by the

guess function, which can be found on pages 33 - 34 in the appendix.

After making a guess in a cell by choosing a candidate from the list of possibilities it can be,

the algorithm will apply the constraints function, defined on page 33 in the appendix, to see if

it can solve the rest of the puzzle. However, if an error is found, then it will backtrack to guess

a different possibility for that cell. Hence, this can be seen as following rules rather than just

searching for an answer, as Hayes (2006, p.15) puts it “backtracking itself can be viewed as a

logical operation; it supplies a proof by contradiction.”

To code this in Python, a stack is used in order to keep track of the Sudoku grid before

making guesses so we can retreat back if a wrong guess is made. The Dictionary of Computer

Science (2016) states that a stack is a “linear list where all accesses, insertions, and removals are

made at one end of the list, called the top. This implies access on a last in first out (LIFO) basis:

the most recently inserted item on the list is the first to be removed.” To make use of a stack,

the algorithm makes a guess; say it is guessing x is the answer in cell (i, j), then the algorithm

will remove x as a possible candidate in cell (i, j), and insert a copy of that Sudoku grid to

the stack. If by choosing x to be in (i, j) leads to an error (i.e. by choosing this possibility,

it reaches a point where a cell has no possible answers or a number occurs more than once in

a row, column or square), then by contradiction, we can conclude that x is not in cell (i, j).

Then, the algorithm will go back to the last item in the stack, which will be the grid before mak-

ing the guess that x should be in cell (i, j) and with x no longer a possible candidate for that cell.

After making a guess and applying the constraints function, there are three possible out-

comes:

1. The puzzle can be completed immediately.

2. The algorithm reaches a point where it can no longer lock any answers and needs to make

another guess.

3. The algorithm reaches a contradiction, hence it goes back up the stack to guess a different

number.

The algorithm now combines the constraints function and a backtracking algorithm so that it

can be more efficient than brute force searching for a solution. Note that before a guess is made,

a function first smallest mark up is called, which is shown on page 26 in the appendix. The rea-

son why this is useful is that if we chose to try a number in a cell with only 2 possibilities, then

there is a probability of 1
2 that the guess is correct. On the other hand, say if we chose to try to

guess a number in a cell that has 6 possibilities, then we would expect to be correct 1
6 of the time,

as we have no idea in this case what number is better to choose. Hence by choosing to guess

a cell with the least number of possible candidates, we maximise the probability of being correct.

13

To illustrate how the guess function works, if it was applied to the puzzle in figure 12, the

guess function will look for lists of length 2 in the puzzle, as that is the smallest length of

possibilities. It does this in the order defined in figure 6. The first guess that the algorithm

makes is by choosing 1 in cell (1, 3), as it will be the first entry that the algorithm finds with 2

possibilities. After choosing 1, it will then apply the constraints function to try and finish the

puzzle. In this case, by choosing 1 and making more guesses after that, the algorithm reaches

an error, so it fills in cells and reaches a point where a cell has no more possibilities. The result

of choosing 1 in cell (1, 3) is shown in figure 13. Then, as a contradiction is found, the algorithm

goes back up the stack to the puzzle with only 9 as a possibility in that cell.

[[8, 5, 1, 6, 9, 2, 4, 3, 7],

[7, 2, 6, 4, 1, 3, 5, 8, 9],

[9, 3, 4, 8, 7, 3, 5, 2, 6],

[6, [8, 9], [8, 9], 1, 4, 7, 3, 5, 2],

[3, 7, 5, 2, 6, 8, 9, 1, 4],

[1, 4, 2, 3, 5, 9, 7, 6, 8],

[4, 6, 3, 9, 8, 1, 2, 7, 5],

[5, 1, 7, [], 2, 4, 8, 9, 3],

[2, [8, 9], [8, 9], 7, 3, 6, 1, 4, 1]]

Figure 13: An example mark up of a Sudoku grid with an error

Another error that could occur is that it chooses to guess a value that leads to two or more

numbers appearing in a row, column or
√
n ×
√
n sub-grid. This may occur if the algorithm

keeps guessing for a solution and then two cells or more that share the same peer only have one

possibility, which is the same number. This is not as a result of the constraints function, but

because the choice of number that is being guessed is wrong. This error is also checked in the

function error check (defined on pages 26 - 27), where it counts the occurrence of a number in

each row, column and
√
n ×
√
n sub-grid; if a number occurs more than once, then an error is

found.

4.2 The Solve Function

The solve function can be found on page 34 in the appendix. The purpose of this function is to

combine the constraints function and the guess function. The function starts with calling possi-

bilities puzzle to initialise the puzzle to start solving it. Recall the constraints function returns

True if the puzzle is completed. Hence by using if/else statements, the solution is printed and

the puzzle is returned if the Sudoku is solved. However, if it is not completed, then it will need

to start searching for a solution. It first creates the stack to keep track of the guesses, and guess

will be called to complete the puzzle.

The next section looks at how this algorithm performs and how well it was implemented.

14

5 Results

5.1 Testing the Algorithm

The complete algorithm can be found in the appendix, in the program named solver.py. The

solve function can be found on page 34, which combines the code explained in sections 3 and

4 to solve Sudoku puzzles. Sudoku puzzles can be found easily by an Internet search and we

will apply the algorithm to see how it performs in solving these. The computer used to test the

algorithm was the XPS 13 with a 2.30GHz Intel Core CPU, so it is possible to have significantly

faster solution times with a more powerful computer.

As reported by Collins (2012), Finnish Mathematician Arto Inkala claimed to have created

the worlds hardest Sudoku puzzle, which is shown in figure 14. The algorithm was able to solve

this in 4.44 seconds. After initially trying to solve the puzzle using logic rules only and applying

the constraints function, no numbers were locked in. Hence, a solution had to be found using

the backtracking algorithm.

The solution:

[8, 1, 2, 7, 5, 3, 6, 4, 9]

[9, 4, 3, 6, 8, 2, 1, 7, 5]

[6, 7, 5, 4, 9, 1, 2, 8, 3]

[1, 5, 4, 2, 3, 7, 8, 9, 6]

[3, 6, 9, 8, 4, 5, 7, 2, 1]

[2, 8, 7, 1, 6, 9, 5, 3, 4]

[5, 2, 1, 9, 7, 4, 3, 6, 8]

[4, 3, 8, 5, 2, 6, 9, 1, 7]

[7, 9, 6, 3, 1, 8, 4, 5, 2]

Time taken:4.440655837307019

Figure 14: Sudoku puzzle created by Arto Inkala in 2012 and its solution

In addition, Inkala also created two other puzzles in 2006 and 2010, which he claimed to

be the hardest puzzles he had created. Hutchinson (2010) reported that Arto Inkala created a

puzzle in 2010, which he also described as “the worlds hardest Sudoku”. The algorithm took

1.48 seconds to solve this. This puzzle and its solution is shown in figure 15.

Inkala named the puzzle that he created in 2006 AI Escargot, as Stuart (2008) states. This

puzzle and its solution is shown in figure 16. For this puzzle, the algorithm took 4.84 seconds

to solve.

To test the algorithm further, Project Euler (2015) provides 50 9 × 9 Sudoku puzzles. The

algorithm was able to solve all of these; the longest time to solve one of them was 0.39 seconds,

whereas the shortest time to solve one of them was 0.015 seconds. The mean average of the time

to find a solution to a puzzle was 0.088 seconds.

15

The solution:

[1, 4, 5, 3, 2, 7, 6, 9, 8]

[8, 3, 9, 6, 5, 4, 1, 2, 7]

[6, 7, 2, 9, 1, 8, 5, 4, 3]

[4, 9, 6, 1, 8, 5, 3, 7, 2]

[2, 1, 8, 4, 7, 3, 9, 5, 6]

[7, 5, 3, 2, 9, 6, 4, 8, 1]

[3, 6, 7, 5, 4, 2, 8, 1, 9]

[9, 8, 4, 7, 6, 1, 2, 3, 5]

[5, 2, 1, 8, 3, 9, 7, 6, 4]

Time taken:1.4836864139209274

Figure 15: Sudoku puzzle created by Arto Inkala in 2010 and its solution

The solution:

[1, 6, 2, 8, 5, 7, 4, 9, 3]

[5, 3, 4, 1, 2, 9, 6, 7, 8]

[7, 8, 9, 6, 4, 3, 5, 2, 1]

[4, 7, 5, 3, 1, 2, 9, 8, 6]

[9, 1, 3, 5, 8, 6, 7, 4, 2]

[6, 2, 8, 7, 9, 4, 1, 3, 5]

[3, 5, 6, 4, 7, 8, 2, 1, 9]

[2, 4, 1, 9, 3, 5, 8, 6, 7]

[8, 9, 7, 2, 6, 1, 3, 5, 4]

Time taken:4.836783499278081

Figure 16: Inkala’s AI Escargot Sudoku puzzle and its solution

In the puzzles provided by Project Euler (2015), only 4 puzzles required the backtracking al-

gorithm to be used, as the rest could be solved using logic techniques alone. Hence the solutions

were found quicker than the puzzles created by Finnish Mathematician, Arto Inkala, where all

required a guess to be made.

The algorithm was written so that it can solve Sudoku puzzles of arbitrary size. Maack

(2017) provides 16×16 and 25×25 Sudoku puzzles on his website, by taking 10 random puzzles

out of the 24 ‘medium’ 16 × 16 Sudoku puzzles, the algorithm was able to solve all of them

within 0.097-1.72 seconds. Further, it was able to solve the 25× 25 puzzles that were available

on the website.

16

5.2 Evaluation

Overall, the algorithm is accurate in solving arbitrary instances of Sudoku puzzles. However,

the implementation and efficiency of the algorithm can be improved.

A weakness of the backtracking algorithm is that the data structure used to code a Sudoku

puzzle is a list of lists. If the algorithm needed to search for a solution, at each step, a function

deepcopy was used to add a copy of the puzzle to the stack. This function can be imported from

the copy package. This is less efficient than making a copy of a string, say. Hence a possible way

to improve the efficiency of the algorithm would be to use strings to represent Sudoku puzzles,

rather than a list. This can also apply to other areas in the algorithm, for example searching

through the elements in a list is slower than searching through characters in a string. Hence

this is a possible way to reduce the time needed to find a solution.

Further, when the algorithm is making a guess, it finds the list with the least number of

possibilities, then chooses the first number in the list to guess. However, there could be better

ways to choose which number to guess. For example, the number could be chosen by random.

This can be done by shuffling the list before choosing the first element, which can be achieved

by importing the random package in Python and using random.shuffle(puzzle[i][j]). This

can be added on line 394 in the guess function on page 33 in the appendix. (Note that this

method makes it possible to generate valid Sudoku grids by calling the solve function on an

empty Sudoku grid). However, using this did not always reduce the time required to find a

solution and was not always reliable. For example, in one test using this method, the algorithm

solved AI Escargot in 0.55 seconds, compared to 4.84 seconds before. However, in another test,

it took 10.29 seconds to solve. In a small sample of 10 tests, the solution times (in seconds) to

complete AI Escargot were:

0.55560, 0.82070, 4.70421, 8.37626, 5.03782,

4.57218, 8.5901, 8.58921, 10.29317, 4.5212

Hence, despite having the chance to reduce the time significantly, there is also a chance to

increase the solution time if a wrong path is taken. Although this is a small sample, it shows

that randomly guessing a value is not a reliable method to reduce the time needed to find a

solution.

This can also be applied to how it chooses which cell to guess in. The cell order for which

the algorithm finds the cell with the least number of possibilities is shown in figure 6. But there

could be alternative ways to define the order in which the algorithm chooses a cell to guess in.

However, improving these choices and ordering of guesses could take many more lines of code to

implement, whereas optimising the code in other ways and writing cleaner code could increase

the efficiency more.

17

6 Sudoku Generator

6.1 Generating 9× 9 Sudoku grids

The following section is based on the work by Evans et al. (2011) and presents a method for

generating 9× 9 Sudoku puzzles.

1. Bona (2004, p.1) gives the following definition for a permutation of a set: “a linear order-

ing of the elements of the set [n] = {1, 2, 3, ..., n} is called a permutation.” The method

starts off with the top row, and fills these cells in with a random permutation of {1, 2, ..., 9}.

At this step, there are 9! choices.

2. Next, lets denote the numbers in the top row as {a11, a12, ..., a19} and also let {a11′, a12′, a13′}
and {a11′′, a12′′, a13′′} be the two permutations of the set {a11, a12, a13}, not necessarily

different. And then similarly for {a14, a15, a16} and {a17, a18, a19} in the same way. Then

the second and third row can be either:

{a14′, a15′, a16′, a17′, a18′, a19′, a11′, a12′, a13′}

{a17′′, a18′′, a19′′, a11′′, a12′′, a13′′, a14′′, a15′′, a16′′}

or {a17′, a18′, a19′, a11′, a12′, a13′, a14′, a15′, a16′}

{a14′′, a15′′, a16′′, a17′′, a18′′, a19′′, a11′′, a12′′, a13′′}

Thus, these choices will make the first three rows of the Sudoku. At this step, there are

2(3!)6 number of choices.

3. At the next step, the method looks to fill in the column entries to complete the grid. Evans

et al. (2011) use Ci to denote the first three elements for the column i. Hence, we have

C1 =

a11a21

a31

 , C2 =

a12a22

a32

 , ..., C9 =

a19a29

a39

 .

Then as [C1, C2, C3] forms the first 3 × 3 sub-grid, the first three columns of the Sudoku

grid can be either C1 C2 C3

C2 C3 C1

C3 C1 C2

 or

C1 C2 C3

C3 C1 C2

C2 C3 C1


And similarly for the columns [C4, C5, C6] and [C7, C8, C9]. Hence there are 23 = 8 ways

to permute these.

4. After completing the 9× 9 grid, it is possible to get even more Sudoku grids by permuting

the rows. Let R4, R5 and R6 be the fourth, fifth and sixth row of the grid, and similarly

18

for R7, R8 and R9. Then MR = {R4, R5, R6} forms the middle horizontal band and

BR = {R6, R7, R8} forms the bottom horizontal band.

Evans et al. (2011) note that any permutation of the rows in MR and BR will still make

the grid a valid Sudoku grid. Hence this step gives (3!)2 more choices.

This method can generate (9!) × 2(3!)6 × 23 × (3!)2 = 9, 751, 984, 865, 280 ≈ 1013 different

9× 9 Sudoku grids.

6.2 Generating n× n Sudoku grids

In extension to the work done by Evans et al. (2011), this method can be generalised to create

Sudoku grids of size n and which can be coded in Python. The function create sudoku can be

found in the appendix on page 35. The function takes an argument, m, which is equal to
√
n.

1. For the first step, the method starts off with filling the squares in the top row with a

random permutation of {1, 2, ..., n}.

At this step, there are n! number of choices. The code to implement this in Python can be

found on lines 40 - 44 in the generator.py program, which is on page 35 in the appendix.

2. At the next step, in the method given by Evans et al. (2011), the top row is split into

chunks of size 3 and then fills in the next 2 rows. To generalise this to an n × n Sudoku

puzzle, the top row is split into chunks of size
√
n. Now lets denote the numbers in the

top row as {a11, a12, ..., a1n} , then the top row is made by combining the elements of the

set {{a11, ..., a1√n}, ..., {a1(n−√n+1), ..., a1n}}. Then to fill in the next (
√
n − 1) rows, by

the rule that the digits 1 - n must appear only once in a
√
n×
√
n sub-grid, we must find

the possible derangements of the set {{a11, ..., a1√n}, ..., {a1(n−√n+1), ..., a1n}}.

Wallis (2013, p.151) defines a derangement of an ordered set of objects as “a way of re-

arranging the objects so that none appears in its original position.” By finding possible

derangements, the next row will not violate the constraints of a valid Sudoku puzzle. A

function named derangement is used to find the different derangements of elements in a

list and is defined on page 35 in the appendix.

The permutations of a set can be found using the permutations function, which can be

imported from the itertools package in Python. Then the derangement function works by

taking in a list of permutations and then loops through a replicate of the list. The first

item in the list is used to compare with other permutations. If it finds a permutation that

has an object in the same position then it is deleted from the list. Then the first item in

the list will be deleted, so only the derangements of the list are returned. For example,

the possible permutations of the set {1, 2, 3} are:

[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

19

Then by calling the derangement function on this list, it returns the list:

[(2, 3, 1), (3, 1, 2)]

Now after finding the different derangements of {{a11, ..., a1√n}, ..., {a1(n−√n+1), ..., a1n}},
the next step is choose an order for the next (

√
n − 1) rows. This is done by the or-

der function, which is shown on page 35 in the appendix. This is called until the next

(
√
n− 1) rows are determined. This function works by choosing a random element in the

list for the first object by shuffling the list, and then calling the derangement function to

delete the elements that can not be the next element in the list. This keeps on calling it-

self until the list of derangements is empty, meaning the next (
√
n−1) rows are determined.

To put this together, this is implemented in Python by using the code on lines 46 - 61 on

pages 35 - 36 in the appendix.

3. At the third step, the method fills in the column entries. Now let Ci denote the first
√
n

elements of column i. Then for an n× n Sudoku,

C1 =


a11

a21

...

a√n1

 , C2 =


a12

a22

...

a√n2

 , ..., Cn =


a1n

a2n

...

a√nn

 .

Then [C1, C2, ..., C√n] forms the first
√
n×
√
n sub-grid. To fill in the rest of the vertical

band, we need to find the different derangements of this list, and find a new order in the

same way as in step 2. This is done by the code on lines 63 - 94 on page 36 in the appendix.

Comparing this to step 3 in the method by Evans et al. (2011), the derangements of

[C1, C2, C3] are [C2, C3, C1] and [C3, C1, C2], hence the first three columns of the Sudoku

grid can be either C1 C2 C3

C2 C3 C1

C3 C1 C2

 or

C1 C2 C3

C3 C1 C2

C2 C3 C1

 .

Then we do the same for columns [C√n+1, ..., C2
√
n],...,[Cn−

√
n+1, ..., Cn].

4. Finally, after completing the n×n Sudoku grid, for each horizontal band, any permutation

of the rows will still give a valid Sudoku grid. This can be done in Python using code on

lines 96 - 105 on pages 36 - 37 in the appendix. In the method given by Evans et al. (2011),

only the rows in the middle and bottom bands are permuted, however by permuting the

top
√
n rows as well, we are able to generate more Sudoku grids.

The function create sudoku can be found on pages 35 - 37 in the appendix within the gen-

erator.py program. This combines the steps described above to generate valid Sudoku grids of

size n, where n is a square number.

20

6.3 Generating puzzles using the Solver algorithm

The method given in sections 6.1 and 6.2 describes a methodical approach to generate a Sudoku

grid. However, as briefly stated in section 5.2, it is possible to generate a valid Sudoku grid using

solve function in the solver.py program. To do this, when the solver algorithm searches guesses

a number in a cell, it must select a random number from the list rather than the first one in

the list. This can be done by adding random.shuffle(puzzle[i][j]) in the guess function on

line 394, which can be found on page 33 in the appendix. By adding this line, the list is shuffled

before selecting the first element. Hence by trying to solve an empty grid, it will return a valid

Sudoku grid.

6.4 Constructing puzzles and difficulty of puzzles

Davis (2011, p.57) states that the difficulty of a Sudoku puzzle has little to do with the number

of clues given initially and that difficulty ratings are given to indicate how hard it would be for a

human to solve. A first thought to create a harder puzzle is to give less clues. However, having

less clues given does not always mean the puzzle is harder. For example, the solver algorithm

was able to solve the puzzle in figure 17 with the logic rules explained in section 3 alone in 0.14

seconds. However, the puzzle created by Finnish mathematician Arto Inkaka shown in figure 14

has 21 clues, but required a guess and took 4.44 seconds to solve.

The solution:

[9, 2, 8, 4, 7, 6, 1, 5, 3]

[4, 5, 3, 2, 9, 1, 6, 7, 8]

[7, 1, 6, 8, 5, 3, 2, 4, 9]

[1, 6, 4, 3, 8, 7, 5, 9, 2]

[3, 7, 2, 9, 6, 5, 4, 8, 1]

[8, 9, 5, 1, 2, 4, 7, 3, 6]

[6, 4, 9, 7, 3, 2, 8, 1, 5]

[5, 8, 1, 6, 4, 9, 3, 2, 7]

[2, 3, 7, 5, 1, 8, 9, 6, 4]

Time taken:0.1432105444603354

Figure 17: A 17 clue puzzle and its solution

To generate a puzzle from a grid, the following method described by Davis (2011, p.58) can

be used:

1. Remove some numbers from the grid randomly.

2. Try to solve the resulting puzzle.

(a) If the puzzle has a unique solution (i.e. the solved solution is the same as the original),

then go back to 1.

(b) If the puzzle has a unique solution and the puzzle has the desired numbers of un-

knowns, end.

21

(c) If the puzzle does not have a unique solution, refill the cells that had numbers removed

and go back to 1.

This method starts to remove numbers from the grid a few at a time. This is because if all

the numbers were removed at once, then it could take a long time until a puzzle is found that

gives a unique solution. Hence, to reduce the time needed to find a unique puzzle, the number

of values removed will be done incrementally. If the solved version of the puzzle is different than

the solution then it will go back and choose different values to remove from the puzzle.

22

7 Conclusion

In this report, I have coded a pair of algorithms: one that can solve Sudoku puzzles of arbitrary

size and one that can generate Sudoku grids. The algorithm to solve Sudoku puzzles was a

combination of applying logical rules to find solutions to cells and a backtracking algorithm if it

was needed. Although the efficiency of the algorithm to solve Sudoku puzzles can be improved,

it is accurate in completing this task. With more time permitted, it would have been possible

to optimise this and to write the code in a cleaner way. Moreover, to extend this project, it is

possible to also code a function to generate puzzles, which would take a Sudoku grid and remove

cells to return a puzzle. It would have been easy to randomly take entries out of the grid, but

to ensure that there is a unique solution, entries must be taken out with care. A method to

generate Sudoku puzzles was briefly explained in section 6.4.

23

References

[1] The Concise Oxford Dictionary of Mathematics. [Online]. 5th ed. 2005. s.v. Latin square.

[Accessed 14 November 2016]. Available from:

http://www.oxfordreference.com/view/10.1093/acref/9780199235940.001.0001/acref

-9780199235940-e-1622?rskey=DWBex3&result=1651

[2] A Dictionary of Computer Science. [Online]. 7th ed. 2016. s.v. Backtracking. [Accessed 5

February 2017]. Available from:

http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref

-9780199688975-e-304?rskey=RDYvfX&result=366

[3] A Dictionary of Computer Science. [Online]. 7th ed. 2016. s.v. Stack. [Accessed 5 February

2017]. Available from:

http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref

-9780199688975-e-5006?rskey=Rk8Vtu&result=5481

[4] Anon. 2015. Project Euler. [Online]. [Accessed 1 March]. Available from:

https://projecteuler.net/problem=96

[5] Bona, M. 2012. Combinatorics of Permutations. 2nd ed. Florida: Taylor & Francis Group.

[6] Collins, N. 2012. World’s hardest sudoku: can you crack it?. The Telegraph. [Online]. 28

June. [Accessed 1 March]. Available from:

http://www.telegraph.co.uk/news/science/science-news/9359579/

Worlds-hardest-sudoku-can-you-crack-it.html

[7] Crook, J.F. 2009. A Pencil-and-Paper Algorithm for Solving Sudoku Puzzles. Notices of the

American Mathematical Society. 56(4), pp.460-468.

[8] Davis, T. 2011. The Mathematics of Sudoku. Expeditions in Mathematics. pp.31-59.

[9] Evans, R., Lindner, B. and Shi, Y. 2011. Generating Sudoku puzzles and its applications

in teaching mathematics. International Journal of Mathematical Education in Science and

Technology. 42(5), pp.697-704.

[10] Felgenhauer, B. and Jarvis, F. 2006. Mathematics of Sudoku I. Mathematical Spectrum.

[Online]. 39, pp.15-22. [Accessed 16 November 2016]. Available from:

http://afjarvis.staff.shef.ac.uk/maths/felgenhauer_jarvis_spec1.pdf

[11] Greenspan, G. and Lee, R. 2005. Web Sudoku. [Online]. [Accessed 1 March 2017]. Available

from:

http://www.websudoku.com

[12] Hayes, B. 2006. Computer Science: Unwed Numbers. American Scientist. 94(1), pp.12-15.

[13] Herzberg, A.M. and Murty, M.R. 2007. Sudoku Squares and Chromatic Polynomials. No-

tices of the American Mathematical Society. 54(6), pp.708-717.

24

[14] Hutchinson, P. 2010. The world’s hardest sudoku?. The Guardian. [Online]. 22 August.

[Accessed 1 March]. Available from:

https://www.theguardian.com/media/2010/aug/22/worlds-hardest-sudoku

[15] McGuire, G., Tugemann, B. and Gilles Civario. 2014. There Is No 16- Clue Sudoku: Solving

the Sudoku Minimum Number of Clues Problem via Hitting Set Enumeration. Experimental

Mathematics. 23(2), pp.190-217.

[16] Royle, G. 2017. The University of Western Australia. [Online]. [Accessed 12 February 2017].

Available from:

http://staffhome.ecm.uwa.edu.au/~00013890/sudokumin.php

[17] Russell, E. and Jarvis, F. 2006. Mathematics of Sudoku II. Mathematical Spectrum. [Online].

39, pp.54-58. [Accessed 16 November 2016]. Available from:

http://afjarvis.staff.shef.ac.uk/maths/russell_jarvis_spec2.pdf

[18] Stuart, A. 2015. SudokuWiki. [Online]. [Accessed 22 February 2017]. Available from:

http://www.sudokuwiki.org/

[19] Wallis, W.D. 2013. A Beginner’s Guide to Discrete Mathematics. New York: Springer

Science+Business Media.

25

A Sudoku Solver: solver.py

1 from math import sqrt

2 from copy import deepcopy

3 from functools import reduce

4 import random

5

6 def is_full(puzzle):

7 #checks if the grid is full yet or not; returns True if puzzle is full

8 n=len(puzzle)

9 for i in range(n):

10 for j in range(n):

11 if (puzzle[i][j]==0) or (type(puzzle[i][j])==list):

12 return False

13

14 return True

15

16 def count_brute_force(puzzle):

17 #counts the number of solutions we’d need to try if we went brute force route

18 n = len(puzzle)

19 mark_ups = []

20 for i in range(n):

21 for j in range(n):

22 if (type(puzzle[i][j])==list):

23 mark_ups.append(len(puzzle[i][j]))

24

25 solutions = reduce(lambda x, y: x*y, mark_ups)

26

27 return solutions

28

29 def first_smallest_mark_up(puzzle):

30 #finds the first position with the least number of possibilities

31 n=len(puzzle)

32 smallest_len = n

33 for i in range(n):

34 for j in range(n):

35 if (type(puzzle[i][j])==list) and (len(puzzle[i][j])<smallest_len):

36 smallest_len=len(puzzle[i][j])

37

38 (i,j)=(0,0)

39 while not(type(puzzle[i][j])==list and len(puzzle[i][j])== smallest_len):

40 while not(type(puzzle[i][j])==list and len(puzzle[i][j])== smallest_len):

41 if j<(n-1):

42 j+=1

43 else:

44 i+=1

45 j=0

46

47 return (i,j)

48

49 def error_check(puzzle):

26

50 #checks for any errors in the puzzle; returns True if an error is found

51 n=len(puzzle)

52

53 #checking for any lists of length zero

54 for i in range(n):

55 for j in range(n):

56 if (type(puzzle[i][j])==list) and (len(puzzle[i][j])==0):

57 return True

58

59 #checking if any number occurs more than once within a peer

60 for i in range(n):

61 for j in range(n):

62 #checks the rows

63 check = dict ([(i, 0) for i in range(1, n+1)])

64 for y in range(n):

65 if (type(puzzle[i][y])==int) and puzzle[i][y]!=0:

66 check[puzzle[i][y]]= check[puzzle[i][y]]+1

67 for key in list(check.keys()):

68 if (check[key]>1):

69 return True

70 #checks the columns

71 check = dict ([(i, 0) for i in range(1, n+1)])

72 for x in range(n):

73 if (type(puzzle[x][j])==int) and puzzle[x][j]!=0:

74 check[puzzle[x][j]]= check[puzzle[x][j]]+1

75 for key in list(check.keys()):

76 if (check[key]>1):

77 return True

78 #checks the sqrt(n)xsqrt(n) sub -grids

79 check = dict ([(i, 0) for i in range(1, n+1)])

80 x=int(int(i/sqrt(n)) * sqrt(n))

81 y=int(int(j/sqrt(n)) * sqrt(n))

82 for u in range(x, int(x+sqrt(n))):

83 for v in range(y, int(y+sqrt(n))):

84 if (type(puzzle[u][v])==int) and puzzle[u][v]!=0:

85 check[puzzle[u][v]]= check[puzzle[u][v]]+1

86 for key in list(check.keys()):

87 if (check[key]>1):

88 return True

89

90 return False

91

92 def possibilities_puzzle(puzzle):

93 #replaces the unknown values with a set of possible solutions

94 n=len(puzzle)

95 for i in range(n):

96 for j in range(n):

97 if (puzzle[i][j]==0) or (type(puzzle[i][j])==list):

98 puzzle[i][j] = list(range(1,n+1))

99

100 #checking the column values

27

101 for x in range(n):

102 if (puzzle[x][j] in puzzle[i][j]):

103 puzzle[i][j]. remove(puzzle[x][j])

104 #checking the row values

105 for y in range(n):

106 if (puzzle[i][y] in puzzle[i][j]):

107 puzzle[i][j]. remove(puzzle[i][y])

108 #checking the sqrt(n)xsqrt(n) square values

109 x=int(int(i/sqrt(n)) * sqrt(n))

110 y=int(int(j/sqrt(n)) * sqrt(n))

111 for u in range(x, int(x+sqrt(n))):

112 for v in range(y, int(y+sqrt(n))):

113 if (puzzle[u][v] in puzzle[i][j]):

114 puzzle[i][j]. remove(puzzle[u][v])

115

116 return puzzle

117

118 def definite_answers(puzzle):

119 #takes a puzzle with unknown entries as list of possibilities

120 #locks in any cells that are lists of length 1

121 n=len(puzzle)

122 for i in range(n):

123 for j in range(n):

124 if (type(puzzle[i][j])==list) and (len(puzzle[i][j])==1):

125 puzzle[i][j]= puzzle[i][j][0]

126

127 return puzzle

128

129 def update_possibilities(puzzle):

130 #takes a puzzle with unknown entries as list of possibilities

131 #updates the unknown entries to remove any possibilities that may have been

132 #locked in by a step

133 n=len(puzzle)

134

135 for i in range(n):

136 for j in range(n):

137 if type(puzzle[i][j])==int:

138 #checking the column values

139 for x in range(n):

140 if type(puzzle[x][j])==list:

141 puzzle[x][j]=[item for item in puzzle[x][j] if item!= puzzle[i][j]]

142 #checking the row values

143 for y in range(n):

144 if type(puzzle[i][y])==list:

145 puzzle[i][y]=[item for item in puzzle[i][y] if item!= puzzle[i][j]]

146 #checking the sqrt(n) x sqrt(n) square values

147 x=int(int(i/sqrt(n)) * sqrt(n))

148 y=int(int(j/sqrt(n)) * sqrt(n))

149 for u in range(x, int(x+sqrt(n))):

150 for v in range(y, int(y+sqrt(n))):

151 if type(puzzle[u][v])==list:

28

152 puzzle[u][v]=[item for item in puzzle[u][v] if item!= puzzle[i][j]]

153

154 return puzzle

155

156 def peer_checker_col(puzzle , j):

157 #implements the ’peer -checker ’ technique for a column

158 #takes a puzzle with unknown entries as the set of possibilities

159 #checks how many times a number occurs as a possibility in the column it’s in

160 n=len(puzzle)

161 peer_column = dict ([(i, 0) for i in range(1, n+1)])

162 definite_answers = []

163

164 #looping through the column to count how many times it occurs

165 for x in range(n):

166 if (type(puzzle[x][j])==list):

167 for item in puzzle[x][j]:

168 peer_column[item]=(peer_column[item]+1)

169 #checking if any dictionary values are 1

170 for key in list(peer_column.keys()):

171 if (peer_column[key]==1):

172 definite_answers.append(key)

173 #values in definite_answers only occur in the column once , so can be locked in

174 for x in range(n):

175 if (type(puzzle[x][j])==list):

176 for item in puzzle[x][j]:

177 for answer in definite_answers:

178 if item== answer:

179 puzzle[x][j]= answer

180

181 update_possibilities(puzzle)

182 return puzzle

183

184 def peer_checker_row(puzzle , i):

185 #implements the ’peer -checker ’ technique for a row

186 #takes a puzzle with unknown entries as the set of possibilities

187 #checks how many times a number occurs as a possibility in the row it’s in

188 n=len(puzzle)

189 peer_row = dict ([(i, 0) for i in range(1, n+1)])

190 definite_answers = []

191

192 #looping through the row to count how many times it occurs

193 for y in range(n):

194 if (type(puzzle[i][y])==list):

195 for item in puzzle[i][y]:

196 peer_row[item]=(peer_row[item]+1)

197 #checking if any dictionary values are 1

198 for key in list(peer_row.keys()):

199 if (peer_row[key]==1):

200 definite_answers.append(key)

201 #values in definite_answers only occur in the row once , so can be locked in

202 for y in range(n):

29

203 if (type(puzzle[i][y])==list):

204 for item in puzzle[i][y]:

205 for answer in definite_answers:

206 if item== answer:

207 puzzle[i][y]= answer

208

209 update_possibilities(puzzle)

210 return puzzle

211

212 def peer_checker_square(puzzle , i, j):

213 #implements the ’peer -checker ’ technique for a sub -grid

214 #takes a puzzle with unknown entries as the set of possibilities

215 #checks how any times a number occurs as a possibility inthe square it’s in

216 n=len(puzzle)

217 peer_square = dict ([(i, 0) for i in range(1, n+1)])

218 definite_answers = []

219 x=int(int(i/sqrt(n)) * sqrt(n))

220 y=int(int(j/sqrt(n)) * sqrt(n))

221

222 #loops through the possible values of each cell and counts them

223 for u in range(x, int(x+sqrt(n))):

224 for v in range(y, int(y+sqrt(n))):

225 if (type(puzzle[u][v])==list):

226 for item in puzzle[u][v]:

227 peer_square[item]=(peer_square[item]+1)

228 #checking if any dictionary values are 1

229 for key in list(peer_square.keys()):

230 if (peer_square[key]==1):

231 definite_answers.append(key)

232 #values in definite_answers only occur in the sub -grid once , so can be locked

in

233 for u in range(x, int(x+sqrt(n))):

234 for v in range(y, int(y+sqrt(n))):

235 if (type(puzzle[u][v])==list):

236 for item in puzzle[u][v]:

237 for answer in definite_answers:

238 if item== answer:

239 puzzle[u][v]= answer

240

241 update_possibilities(puzzle)

242 return puzzle

243

244 def naked_pairs(puzzle):

245 #implements the ’naked pairs’ technique

246 #takes a puzzle with unknown entries as the set of possibilities

247 #looks for lists of length 2 that are in the share the same peer

248 n=len(puzzle)

249

250 for i in range(n):

251 for j in range(n):

252 if (type(puzzle[i][j])==list) and len(puzzle[i][j])==2:

30

253 #checks the columns

254 for x in range(n):

255 if x!=i and puzzle[i][j]== puzzle[x][j]:

256 #execute if found a naked pair in its column

257 for w in range(n):

258 if w!=i and w!=x and type(puzzle[w][j])==list:

259 puzzle[w][j]=[item for item in puzzle[w][j] if

260 item not in puzzle[i][j]]

261 #checks the rows

262 for y in range(n):

263 if y!=j and puzzle[i][j]== puzzle[i][y]:

264 #execute if found a naked pair in its row

265 for w in range(n):

266 if w!=j and w!=y and type(puzzle[i][w])==list:

267 puzzle[i][w]=[item for item in puzzle[i][w] if

268 item not in puzzle[i][j]]

269 #checks the sqrt(n) x sqrt(n) boxes

270 x=int(int(i/sqrt(n)) * sqrt(n))

271 y=int(int(j/sqrt(n)) * sqrt(n))

272 for u in range(x, int(x+sqrt(n))):

273 for v in range(y, int(y+sqrt(n))):

274 if (i,j)!=(u,v) and puzzle[i][j]== puzzle[u][v]:

275 for s in range(x, int(x+sqrt(n))):

276 for t in range(y, int(y+sqrt(n))):

277 if puzzle[s][t]!= puzzle[i][j] and type(puzzle[s][t])==list:

278 puzzle[s][t]=[item for item in puzzle[s][t]

279 if item not in puzzle[i][j]]

280

281 definite_answers(puzzle)

282 update_possibilities(puzzle)

283 return puzzle

284

285 def same_row_check(coordinates):

286 #if all i coordinates are the same , then they’re in same row; return True

287 n=len(coordinates)

288 for coord in range(1,n):

289 if coordinates[coord][0]!= coordinates [0][0]:

290 return False

291

292 return True

293

294 def same_col_check(coordinates):

295 #if all j coordinates are the same , then they’re in same column; return True

296 n=len(coordinates)

297 for coord in range(1,n):

298 if coordinates[coord][1]!= coordinates [0][1]:

299 return False

300

301 return True

302

303 def locked_candidates(puzzle , i, j):

31

304 #implements the ’locked candidates ’ technique

305 #takes a puzzle with unknown entries as the set of possibilities

306 #looks for candidates that only occur in a row or column in its sub -grid

307 n=len(puzzle)

308 candidates = dict ([(i, 0) for i in range(1, n+1)])

309 x=int(int(i/sqrt(n)) * sqrt(n))

310 y=int(int(j/sqrt(n)) * sqrt(n))

311

312 #loops through the possible values of each cell and counts them

313 for u in range(x, int(x+sqrt(n))):

314 for v in range(y, int(y+sqrt(n))):

315 if (type(puzzle[u][v])==list):

316 for item in puzzle[u][v]:

317 candidates[item]=(candidates[item]+1)

318

319 #checks if any occur between 2 and sqrt(n) times , then its possible they’re

locked

320 for key in list(candidates.keys()):

321 if candidates[key]<2 or candidates[key]>sqrt(n):

322 candidates.pop(key)

323 else:

324 candidates[key]=[]

325

326 #checking if the remaining candidates are locked; checks if appear in same row

/column

327 #seeing where they occur in the grid

328 for u in range(x, int(x+sqrt(n))):

329 for v in range(y, int(y+sqrt(n))):

330 if (type(puzzle[u][v])==list):

331 for item in puzzle[u][v]:

332 for key in list(candidates.keys()):

333 if item==key:

334 candidates[key]. append ((u,v))

335

336 #checking if they occur all in the same column or row

337 for key in list(candidates.keys()):

338 #checking columns

339 if same_col_check(candidates[key]):

340 for i in [i for i in range(n) if i not in range(x, int(x+sqrt(n)))]:

341 j=candidates[key][0][1]

342 if type(puzzle[i][j])==list and (key in puzzle[i][j]):

343 puzzle[i][j]. remove(key)

344 #checking rows

345 if same_row_check(candidates[key]):

346 for j in [j for j in range(n) if j not in range(y, int(y+sqrt(n)))]:

347 i=candidates[key][0][0]

348 if type(puzzle[i][j])==list and (key in puzzle[i][j]):

349 puzzle[i][j]. remove(key)

350

351 definite_answers(puzzle)

352 update_possibilities(puzzle)

32

353 return puzzle

354

355 def constraints(puzzle):

356 #applys the logic rules and techniques to the Sudoku puzzle

357 n=len(puzzle)

358

359 change_checker = []

360 while change_checker != puzzle:

361 change_checker=deepcopy(puzzle)

362 definite_answers(puzzle)

363 update_possibilities(puzzle)

364

365 if not(is_full(puzzle)):

366 #more advanced techniques are needed

367 naked_pairs(puzzle)

368 for i in range(0,n,int(sqrt(n))):

369 for j in range(0,n,int(sqrt(n))):

370 locked_candidates(puzzle ,i,j)

371 for i in range(n):

372 peer_checker_row(puzzle ,i)

373 for j in range(n):

374 peer_checker_col(puzzle ,j)

375 for i in range(0,n,int(sqrt(n))):

376 for j in range(0,n,int(sqrt(n))):

377 peer_checker_square(puzzle ,i,j)

378

379 #calling the function until the sudoku puzzle is solved or makes no changes

380 if is_full(puzzle):

381 return True

382 elif puzzle == change_checker:

383 return False

384 else:

385 constraints(puzzle)

386

387 def guess(stack , puzzle):

388 #implements a backtracking algorithm to complete a Sudoku grid

389 n=len(puzzle)

390

391 while not(is_full(puzzle)) or error_check(puzzle):

392 smallest_index=first_smallest_mark_up(puzzle)

393 (i,j)=smallest_index

394 #random.shuffle(puzzle[i][j])

395

396 if len(puzzle[i][j])!=0:

397 #if there ’s still possibilities , it will make a guess

398 item=deepcopy(puzzle[i][j][0])

399 puzzle[i][j]. remove(puzzle[i][j][0])

400 stack.append(deepcopy(puzzle))

401 puzzle[i][j]=item

402 constraints(puzzle)

403

33

404 if error_check(puzzle):

405 #if there’s an error , go back to last item in stack

406 if len(stack)!=1:

407 puzzle=deepcopy(stack [-1])

408 stack.pop()

409 elif len(stack)==0:

410 return False

411

412 return solve(puzzle)

413

414 def solve(puzzle):

415 n=len(puzzle)

416 possibilities_puzzle(puzzle)

417 constraints(puzzle)

418

419 if constraints(puzzle):

420 print("The solution:")

421 for i in range(n):

422 print(puzzle[i])

423 elif not(constraints(puzzle)) and error_check(puzzle):

424 #didn’t solve it and has an error

425 print("There has been an error in solving this puzzle")

426 elif not(constraints(puzzle)):

427 #didn’t solve it but needs to search for a solution now

428 stack=[deepcopy(puzzle)]

429 return guess(stack ,puzzle)

430

431 return puzzle

34

B Sudoku Generator: generator.py

1 import random

2 from copy import deepcopy

3 from itertools import permutations

4

5 def derangement(list_of_permutations):

6 #takes a list of possible permutations and returns a list of derangements

7

8 replicate=deepcopy(list_of_permutations)

9 #loops through the replicate list

10 for i in range(1,len(replicate)):

11 for item in range(len(replicate[i])):

12 #if there ’s object in the same position , then remove from list

13 if replicate[i][item]== replicate [0][item] and (replicate[i] in

list_of_permutations):

14 list_of_permutations.remove(replicate[i])

15

16 if len(replicate) >0:

17 list_of_permutations.remove(replicate [0])

18

19 return list_of_permutations

20

21 def order(derangements ,m):

22 #takes a set of possible derangements and gives an order for the next (m-1)

choices

23

24 #first shuffling the derangements to get a random one to choose first

25 random.shuffle(derangements)

26 #chooses the next row

27 order=[derangements [0]]

28 #loops through the derangements to keep deleting the ones that are not

possible

29 for i in range(m):

30 derangement(derangements)

31 if len(derangements) >0:

32 order.append(derangements [0])

33

34 return(order)

35

36 def create_sudoku(m=3):

37 n=m**2

38 puzzle = [[0 for i in range(n)] for j in range(n)]

39

40 ##### Step 1: Getting a permutation of n numbers (n! possibilities) #####

41

42 numbers = list(range(1, n+1))

43 random.shuffle(numbers)

44 puzzle [0]= numbers

45

46 ##### Step 2: Getting the first m rows #####

35

47

48 #splitting the list into lists of length m

49 chunks = [numbers[x:x+m] for x in range(0,n,m)]

50

51 #gets a possible derangements of the next (m-1) rows and gets a new order

52 derangements = derangement(list(permutations(chunks)))

53 random.shuffle(derangements)

54 new_order = order(derangements ,m)

55

56 #expanding the chunks into just one list and making them the next (m-1) rows

57 for i in range(1,m):

58 for item in new_order:

59 for chunk in item:

60 random.shuffle(chunk)

61 puzzle[i]=[item for sublist in new_order[i-1] for item in sublist]

62

63 ##### Step 3: Getting the columns #####

64

65 #getting a list of lists which contain the columns of the first m rows

66 columns = [[] for i in range(n)]

67 for j in range(n):

68 for i in range(m):

69 columns[j]. append(puzzle[i][j])

70

71 column_chunks = [columns[x:x+m] for x in range(0,n,m)]

72

73 #getting possible derangements for the columns and get a new order

74 column_derangements = []

75 for i in range(len(column_chunks)):

76 column_derangements.append(derangement(list(permutations(column_chunks[i])))

)

77 new_order_col = []

78 for i in range(len(column_derangements)):

79 new_order_col.append(order(column_derangements[i], m))

80

81 #col_band is the columns for each band

82 col_band=dict((band ,[]) for band in range(1,m))

83 for column in range(m):

84 for band in range(1,m):

85 col_band[band]. append(new_order_col[column][band -1])

86

87 for band in range(1,m):

88 col_band[band]=[item for sublist in col_band[band] for item in sublist]

89

90 #now putting these into the right squares

91 for band in range(1,m):

92 for i in range((band*m), (band*m)+m):

93 for j in range(n):

94 puzzle[i][j]= col_band[band][j][i%m]

95

96 ##### Step 4: Permute the rows for the horizontal bands #####

36

97

98 #get possible permutations of each band

99 new_permutation =[]

100 for i in range(0,m):

101 possible_perms=list(permutations(poss for poss in range ((i*m) ,(i*m)+m)))

102 permutation_choice=possible_perms[random.randint(0,len(possible_perms) -1)]

103 for row_choice in permutation_choice:

104 new_permutation.append(row_choice)

105 puzzle =[puzzle[i] for i in new_permutation]

106

107 return puzzle

37

	Introduction
	Number of different 99 Sudoku grids
	Number of essentially different 99 Sudoku grids
	Uniqueness of 99 Sudoku puzzles

	Notation and Definitions
	An Algorithm to solve Sudoku puzzles logically
	Simple Sudoku Puzzles
	Medium Sudoku Puzzles
	Peer-Checking
	The `Naked-Pairs' technique
	Locked Candidates
	The Constraints Function

	An Algorithm to solve Sudoku puzzles using backtracking
	Backtracking Algorithm
	The Solve Function

	Results
	Testing the Algorithm
	Evaluation

	Sudoku Generator
	Generating 99 Sudoku grids
	Generating nn Sudoku grids
	Generating puzzles using the Solver algorithm
	Constructing puzzles and difficulty of puzzles

	Conclusion
	Sudoku Solver: solver.py
	Sudoku Generator: generator.py

