
MATH5004M: Assignment in Mathematics

Bayesian Sports Modelling

Supervisor: Dr. John Paul Gosling

Ryan Chan

200850644

May 4, 2018

Abstract

We consider the task of predicting football results in the Premier League and propose

a Bayesian hierarchical model. In our model, we aim to estimate the characteristics of

teams that contribute to a team either winning or losing a football match and use these to

predict the score or outcome of future games. The model will be implemented using the

Bayesian inference software Stan and the statistical programming language R. We also

discuss several methods to test the predictive strength of our model and use these methods

to compare with other models implemented previously. The data used throughout the

report is taken from the Football-Data website, on http://www.football-data.co.uk/.

Contents

1 Introduction 1

1.1 Data in football today . 1

1.2 Overview of report . 3

2 Short Introduction to Bayesian Statistics 4

2.1 Prior distribution . 5

2.2 The Likelihood (or data distribution) . 6

2.3 Predictive distribution . 6

2.4 Hypothesis testing . 7

2.5 Point and interval estimation . 7

2.6 Bayesian hierarchical models and DAGs 9

3 Markov Chain Monte Carlo 12

3.1 Markov Chains . 12

3.2 Monte Carlo methods . 14

3.2.1 Rejection Sampling . 15

3.2.2 Importance Sampling . 17

3.3 The Metropolis-Hastings algorithm . 17

3.3.1 The Metropolis algorithm . 18

3.3.2 Discarding early iterations and effective sample size 18

3.3.3 The Metropolis-Hastings algorithm 19

3.3.4 An example of the Metropolis-Hastings algorithm in R 20

3.4 Hamiltonian Monte Carlo . 23

3.4.1 Hamiltonian dynamics . 23

3.4.2 Hamilton’s equations . 24

3.4.3 Hamiltonian Monte Carlo algorithm 25

3.4.4 The Leapfrog algorithm . 27

3.4.5 Summary of the Hamiltonian Monte Carlo algorithm 28

3.4.6 Tuning parameters in HMC and Adaptive HMC 29

3.4.7 An example of the Hamiltonian Monte Carlo algorithm in R 30

4 Modelling football scores 33

4.1 Poisson or not Poisson? . 34

4.2 Alternative distributions for goals scored in football 40

4.2.1 Zero-Inflated Poisson distribution 40

4.2.2 Geometric-Poisson Mixture distribution 42

4.2.3 Negative Binomial distribution . 45

i

5 An analysis of the 2016/17 Premier League Season 47

5.1 Baio & Blangiardo’s (2010) Bayesian hierarchical model 47

5.2 Implementation of Baio & Blangiardo’s model (2010) 49

5.3 Model criticisms . 53

6 Negative Binomial Model 54

6.1 Negative Binomial Model . 54

6.2 Implementation of the Negative Binomial model in Stan 57

7 Model assessments and comparisons 61

7.1 Cross-Validation . 61

7.1.1 MCCV Results . 63

7.1.2 SCV Results . 64

7.2 Brier Score . 65

7.2.1 Brier Score Results . 68

7.3 Rank Probability Score . 69

7.3.1 RPS Results . 70

7.4 Using the models for a betting tool . 72

7.4.1 Betting Assessment Results . 72

7.5 Using the models to predict a league table 74

7.5.1 Predicting League Table Results . 74

8 Conclusion 79

A Example of Rejection Sampling 87

B Example of Metropolis-Hastings Algorithm 87

C Example of Hamiltonian Monte Carlo Algorithm 89

D Assessing distribution fits to goals data (Poisson, ZIP, NB) 91

E Assessing distribution fits to goals data (Geometric-Poisson) 96

E.1 Stan Code . 96

E.2 R Code . 96

F Derivation of results for Zero-Inflated Poisson distribution 98

G Derivation of results for Geometric-Poisson distribution 102

H Implementing Baio & Blangiardo’s model (2010) 103

H.1 Stan Code . 103

H.2 R Code . 105

H.3 Extra Figures for Section 5 . 107

ii

H.4 Posterior Summary Table . 109

H.5 Simulating from the priors from Baio & Blangiardo’s model (2010) 110

I Negative Binomial Bayesian hierarchical model 111

I.1 Stan Code . 111

I.2 R Code . 113

I.3 Simulating from the priors from the Negative Binomial model 117

I.4 Extra Tables and Figures for Section 6 . 119

J Model Assessment 122

J.1 Cross Validation . 124

J.2 Brier Score . 127

J.3 Rank Probability Score . 130

J.4 Betting Assessment . 133

J.5 Predict League Table . 136

K League Tables: Observed and Predicted 146

K.1 Observed League Table (2016/17) . 146

K.2 Predicted League Table using Baio & Blangiardo’s model (2010) 147

K.3 Predicted League Table using Negative Binomial model 147

iii

1 Introduction

1.1 Data in football today

Association football (also known as soccer) is one of the most popular sports in the world

(Economist, 2011) and it is a team sport that is played between two teams, which is made

up of eleven players. The main objective of the game is to score more goals than the

opposing team and the team that scores more goals wins the match. The game ends in a

draw if the number of goals scored by the two teams are equal.

Football is played in countries all around the world and there are many football clubs

that compete for regional or national leagues. In addition, there are also many conti-

nental championships that are played, such as the UEFA Champions League, which is

contested by top-division European clubs. In this report, we will be focusing on the En-

glish Premier League, which follows the ‘double round robin tournament’ format. This

means that each team plays each other twice (home and away). In the Premier League,

there are 20 teams, meaning that over the course of the season each team plays 38 times.

The Premier League is the top division in English football and every year the bottom 3

teams are relegated and replaced by 3 teams from the Championship, the league below

the Premier League. The points system follows the standard 3-1-0 system, where a win

is awarded with 3 points, a draw is awarded 1 point and no points are given for a loss.

Building a model to predict the outcomes of future matches and to the final league table

has obvious applications to gambling and betting markets, where an accurate predictive

model can be very profitable. The Premier League is now one of the richest league in the

world (Deloitte, 2017) and is followed globally around the world. As in any sport, there

is an interest in trying to predict the winner of any two teams. For instance, with the

continuous rise of online gambling, betting companies try to do so for most professional

football games and try to set their odds correctly and so there is motivation to build

more accurate models. Decision analysis and Bayesian decision rules can be applied to

determine which bets/actions should be taken after a model is made to give predictions to

future outcomes. Moreover, other parties interested in building such models are football

teams/clubs themselves to use as a tool to assess their performances, identify strengths or

weaknesses and develop new tactics or strategies. In other sports outside football there

have been a growth in incorporating the use of data in analysis. For example, in ‘Mon-

eyball’, Lewis (2003), discusses how the Oakland Athletics baseball team took advantage

of more analytical gauges of performances to acquire players that were undervalued to

compete against richer teams in the league.

1

Football is a complex sport, since teams can play various possible strategies, formations or

tactics which are carried out by eleven players for each team, and so determining accurate

probabilities for match outcomes is not simple. Reep and Benjamin (1968, p.585) looked

at the number of passes made before shots or goals and observed there was a stochastic

element in the number of goals coming from a particular number of shots in a match.

They inferred then that an excess of shots by one team does not mean that the other

side would not get more goals and win the match and as such concluded, “chance does

dominate the game”.

Anderson & Sally (2014, p.52) collected data from twenty betting exchanges along with

final scores from the 2010/11 season in the NBA (Basketball), NFL (American Football),

MLB (Baseball), Handball Bundesliga (in Germany) and the football scores from the top

leagues in England, France, Spain, Italy and Germany, and the Champions League. They

used this data to measure how well bookmakers were picking the favourites. From this

data, they found that in football only little over half of the time the bookmakers chose the

favourites. However, in handball, basketball and American football, the favourites would

win around two-thirds of their games, while in baseball it is about 60%. In Handball, they

found that more than 70% of games were won by the favourites. This may be the case for

several reasons; the one suggested by Anderson & Sally (2014, p.52) is that generally in

football, ‘the favourite is not really much of a favourite’, meaning that in many matches,

the favourites were only narrowly favoured. Another possible reason is that in football,

goals are more rare and draws are common. In contrast, basketball has more high scoring

matches since the court is much smaller than football pitches so distance to the goal/hoop

is smaller and in basketball, there is a rule which states that after a team gains possession

of the ball, they must shoot within a given time. Since there is a high frequency of shots

in basketball, it seems intuitive that the better team will generally be able to score more

points than their opponents. Therefore, they found that compared to other sports such

as basketball and baseball, football was the most uncertain of team sports.

A study by Ben-Naim, Vazquez & Redner (2005) supports this claim as they used com-

puter simulations of artificial sports leagues using data looking back to the top flight of

English football since 1888, the MLB since 1901, NHL (hockey) since 1917 and the NFL

since 1922 (300,000 total games) and found that the likelihood of the underdog winning

in football was around 45%, the highest of all the sports mentioned above.

This report will aim to tackle the problem of predicting football match outcomes and we

will develop and implement a Bayesian hierarchical model in the programming languages

R (The R Core Team, 2017) and Stan (Stan Development Team, 2017).

2

1.2 Overview of report

The report will be set out as follows: Section 2 provides an introduction to Bayesian

statistics and its methods for inference. In the models that we discuss later in the report,

we will use a Bayesian hierarchical model so Section 2 gives the theoretical framework

that we will be using to obtain predictions for the outcomes of football matches. To

implement these models, we will be using the Stan programming language (Stan Devel-

opment Team, 2017) and the R Statistical language (The R Core Team, 2017). Stan

is a programming language that allows us to implement a Markov Chain Monte Carlo

method called Hamiltonian Monte Carlo to obtain random samples from a probability

distribution where direct sampling is difficult. In Section 3, we will briefly explain the

concepts of Markov Chain Monte Carlo and Hamiltonian Monte Carlo.

Prior to building our first model to predict football matches, we give a short literature

review on past works and assess the assumptions made in these models in Section 4. Fur-

ther, in Section 5 of the report, we discuss a Bayesian hierarchical model developed by

Baio & Blangiardo (2010) that uses a Poisson distribution to model the number of goals

scored by the home and away team and will implement the model in the Stan program-

ming language and R.

In Section 6, we start to develop a different Bayesian hierarchical that uses a negative

binomial distribution to model the goals scored by each team and present some results of

the model.

To assess the models discussed, we use various methods such as Cross-Validation, the

Brier score, Rank Probability Score (RPS) (all of these will be defined later) and we also

assess model performance by attempting to predict a league table and by using it as a

betting model. The results of these scores and assessments can be found in Section 7.

3

2 Short Introduction to Bayesian Statistics

A statistical model is a set of probability distributions on the sample space S (McCul-

lagh, 2002, p.1225). For example, to model goals scored by football teams, the sample

space would be S = {0, 1, 2, 3, ...}. A model can be a useful imitation of a real world

system or process. One important aim of modelling is to try and predict the effect of

a change in the system or to predict future values or events. McCullagh (2002, p.1225)

defines a parametrised statistical model as a parameter set Θ together with a function

Π : Θ → P(S). This function Π assigns each parameter point θ ∈ Θ to a probability

distribution πθ on S, where P(S) is the set of all probability distributions on S. For this

project, we wish to create a statistical model to model the number of goals scored by each

football team in a game with the aim to predict future game outcomes.

Bayesian statistics provides a framework within which uncertainties in real-world problems

can be quantified. The frequentist (or classic) approach to statistics treats parameters

as fixed and unknown quantities that are to be estimated, while the Bayesian approach

treats parameters as random variables.

In a frequentist approach to statistics, probability is viewed as “a limiting ratio in a

sequence of repeatable events” with “the ratio becoming ever more exact as the series

is extended” (Howie, 2002, p.1). Hence, statistical models are based on frequencies of

events. For instance, to assess the distributional fit of a model, hypothesis tests are gen-

erally used and p-values are calculated, which are defined to be the probability under the

null hypothesis of obtaining a result equal or more extreme that was observed (Dahiru,

2008, p.22). Therefore, the p-value is a measure of “discrepancy between the data and the

null hypothesis” (Goodman, 1999, p.1005). In Section 4, we use one of these tests, the

Chi-Squared Test to assess the distributional fits to outcome data. However, we use these

as a tool for exploratory analysis before building our own model rather than to accept or

reject a potential distribution for our model.

The Bayesian approach to statistics takes its name from Bayes’s Theorem (Box & Tiao,

1992, p.10). This theorem allows us to make probability statements about a parameter

θ given some data x. Using that the joint probability mass or density function can be

written as a product of the prior distribution, π(θ) and the data distribution, π(x | θ)
(Gelman et. al, 2014, p.6),

π(θ, x) = π(x | θ)π(θ),

then by the rule of conditional probability, we have Bayes’s Theorem,

4

π(θ | x) =
π(x | θ)π(θ)

π(x)
, (1)

where, π(θ | x) denotes the conditional probability of observing θ given some data x and

π(x) is the marginal distribution.

Equivalently, for fixed x, π(x) can be considered a constant, hence, we have

π(θ | x) ∝ π(x | θ)π(θ). (2)

Note that the data distribution is proportional to the likelihood Bolstad (2007, p.67), so

π(x | θ) ∝ l(θ;x) and Bayes’s Theorem can also be written as,

π(θ | x) ∝ l(θ;x)π(θ). (3)

The constant of proportionality, 1
π(x)

, in equation 2 can be found through the law of total

probability, since

π(x) =

∫
Θ

π(x | θ)π(θ)dθ =

∫
Θ

π(x, θ)dθ.

Lee (2012, p.36) states that broadly speaking, in Bayesian inference, we take prior beliefs

about various hypothesis and then modify these prior beliefs in the light of data to obtain

posterior beliefs. Bayesian inference is based upon equation 2, as we take this to be

our posterior distribution, which encodes what we believe after seeing some data. So

after we observe some data x, we update our beliefs using equation 2. Note that in the

current notation, we are implicitly assuming the conditioning in the model, whereas other

models will alter these. In a more general model, the parameter θ may depend on another

parameter µ and so equation 2 becomes

π(θ | x, µ) ∝ π(x | θ, µ)π(θ | µ). (4)

This is important to note, since later we propose a hierarchical model, where parameters

will depend on another set of parameters called hyperparameters; see Section 2.6.

2.1 Prior distribution

Let θ be an uncertain parameter, then in Bayesian inference, where we treat parameters

as random variables, we use the prior density, π(θ) (or π(θ | µ) if θ depends on another

parameter µ), to encode our uncertainty and prior beliefs about the parameter θ.

5

2.2 The Likelihood (or data distribution)

From equation 4, we see that the posterior inference is only affected by the data through

π(x | θ, µ). The likelihood tells us the probability of observing the data, x, if the model

parameter is θ, and this encodes our beliefs about how the data is generated:

l(θ;x, µ) ∝ π(x | θ, µ)

In contrast, in frequentist statistics, p-values are considered, which look at the proba-

bility of seeing such data, x, (or something more extreme) given the null hypothesis is

true, rather than a value of a parameter θ, since parameters are fixed in the frequentist

framework.

Gelman et al. (2014, p.8) notes that Bayesian inference obeys the likelihood principle,

which states that for a given sample of data, any two probability models that have the

same likelihood function should give the same inference for θ. This means that the

inference should only be affected by the new data through the likelihood and that we

should make the same inferences for θ after observing x or y if l(θ;x) ∝ l(θ; y).

2.3 Predictive distribution

After observing the data x, we are still uncertain about the parameter θ and so we are

still uncertain about the future data x̃, say. Then the distribution of x̃ is known as the

predictive distribution, sometimes known as the posterior predictive distribution and is

defined as

π(x̃ | x, µ) =

∫
Θ

π(x̃, θ | x, µ)dθ

=

∫
Θ

π(x̃ | θ, µ, x)π(θ | µ, x)dθ

=

∫
Θ

π(x̃ | θ, µ)π(θ | x)dθ

= EΘ | x[π(x̃ | θ, µ)]

.

Lee (2012, p.39) notes that when there are no observations to take into account, this

is called the preposterior distribution, which encodes our uncertainty about what value

of x we will observe before any data is available to us yet. Hence, we have seen that

in the Bayesian approach, we express our uncertainty for parameters by specifying prior

distributions and then we use sample data and Bayes’s Theorem to arrive at a posterior

probability distribution in which we make predictions and inferences from.

6

2.4 Hypothesis testing

As stated above, in a frequentist approach to statistics, hypothesis tests are used and

p-values are calculated to determine if they can accept a null hypothesis or not (a null

hypothesis in a goodness-of-fit test is the hypothesis that there is no significant difference

between specified populations). In the Bayesian approach to hypothesis testing, if we

were forced to act accordingly to whether we believed in a hypothesis or not, we just

need to calculate the posterior probabilities (Lee, 2004, p.118). Suppose that we have two

hypotheses, H0 : θ ∈ R (the null hypothesis), and H1 : θ /∈ R, (the alternative hypothesis),

then we just calculate the posterior probabilities,

π0 = π(θ ∈ R | x) and π1 = π(θ /∈ R | x),

and then decide between H0 and H1 accordingly.

2.5 Point and interval estimation

For point estimation, a single statistic is calculated from sample data and used to estimate

an unknown parameter (Bolstad, 2007, p.163). As stated before, in frequentist statistics,

unknown parameters are treated as fixed to be estimated. Popular methods to estimate

parameters include maximum likelihood estimation or method of moment estimates (for

more details about frequentist statistics and such methods, see Rice, 1995). From a

Bayesian perspective, point estimation uses a single statistic to summarise the posterior

distribution. An obvious posterior estimate of θ is the posterior mean, defined as

θM = Eθ | x[θ | x].

Other posterior estimates include the median and the mode of the posterior distribution

(also known as the maximum a posteriori (MAP) estimate). In this report, we will mainly

use either the posterior mean or the MAP estimate as a Bayesian point estimate for an

unknown parameter θ. However, in Section 4 where we perform some exploratory analysis

on the dataset, for simplicity we will use maximum likelihood estimation where we can

(the maximum likelihood estimate (MLE) for a parameter θ is the value of θ that max-

imises the likelihood (Rice, 1995, p.254)). The reason for this is because as the number

of data increases, the MAP gets closer to the MLE.

Consider a set of data x = (x1, ..., xn) since the maximum likelihood estimate is defined

as

7

θMLE = argmax
θ

l(θ;x)

= argmax
θ

log l(θ;x)

= argmax
θ

log
∏
i

l(θ;xi)

= argmax
θ

∑
i

log l(θ;xi)

Then for the maximum apriori estimate, since this is the mode of the posterior density

given in equation 2, then this is defined as

θMAP = argmax
θ

l(θ;x)π(θ)

= argmax
θ

log l(θ;x)π(θ)

= argmax
θ

log
∏
i

l(θ;xi)π(θ)

= argmax
θ

∑
i

log l(θ;xi)π(θ)

By comparing these two expressions, the only difference is that in the MAP estimate, the

prior density for θ is included. But for Bayesian approaches, under some sensible con-

ditions (not discussed here), it can be shown that the asymptotic posterior distribution

does not depend on the chosen prior distribution. For more details on the asymptotic

behaviour of posterior distributions see Hartigan (1983) and Walker (1967). Hence for

simplicity and for the use of exploratory analysis, we use the MLE to estimate parameters

in Section 4.

For interval estimation, in the frequentist/classical statistical framework, confidence in-

tervals are used. These are often misinterpreted to mean there is a (α × 100)%, with

0 < α < 1, chance that the true value of a parameter θ is in the interval, however this

is not the case. The correct interpretation is that (α × 100)% of the random intervals

calculated in this frequentist way will contain the true value of the parameter (Bolstad,

2007, p.168), i.e. we are (α×100)% confident that our interval will contain the true value.

As Gill (2014, p.43) notes, a 95% interval covers the true value of the parameters 19/20

times, on average.

However, in a Bayesian setting, we use the posterior distribution to define credible inter-

vals; a (α × 100)% credible interval for θ is given by (a, b) if π(θ ∈ (a, b)) = α. In this

way to perform interval estimation, we are actually stating that we believe there is an

(α × 100)% chance that the parameter θ falls within this interval. Hence, in this report,

we will use credible intervals for interval estimation.

8

2.6 Bayesian hierarchical models and DAGs

Gelman et al. (2014, p.101) note that in hierarchical models, observable outcomes are

modelled conditionally on certain parameters, which themselves are also given proba-

bilistic specification in terms of other parameters, which are called hyperparameters. In

non-hierarchical models, observables are modelled conditionally on a set of parameters,

but these parameters do not have any dependence on any other parameters. Hence in an

hierarchical model, there is a multilevel parameter conditional structure. For such models,

a directed acyclic graph (DAG) can be drawn to illustrate the dependency structure of

the model.

Diestel (2006, p.2) defines a graph to be a pair G = (V,E) of sets such that E ⊆ [V]2. The

elements of V are the vertices of the graph G, the elements of E are its edges. A directed

acyclic graph (DAG) is a graph where the edges point in a particular direction between

the two vertices and there are no cycles, meaning that there are no paths from a vertex to

itself. Pearl (2009, p.14) notes that DAGs have been used represent causal or temporal re-

lationships and are sometimes known as Bayesian networks, a term coined by Pearl (1985).

In a Bayesian hierarchical model, we might have some observations x1, ..., xN , that has

a distribution which depends on an unknown set of parameters, θ = {θ1, ..., θn}, which

themselves have a distribution that depends on a set of hyperparameters φ = {φ1, ..., φm}.
Figure 1 shows the difference between a standard non-hierarchical model (1a) and a hier-

archical model (1b), where the arrows represent relationships between variables. If there

is an arrow from a variable X to Y then we say Y directly depends on X. In the example

of the standard non-hierarchical model, each of the xi for i = 1, ..., N , depends on a the

parameter θi. However, in the hierarchical model, each of the xi for i = 1, ..., N , depends

on a the parameter θi, but now θi parameters depend on another set of parameters, φ (in

these examples, N = n and m = 4 in the above notation). The DAG representation of

these models show the hierarchical and dependency structure of the models.

With more complicated hierarchical models, we can carry on with this process, as φ may

also depend on one or more hyper-hyperparameters η and so on to create more levels of

dependency. If η is unknown we can specify hyper-hyperprior distributions to represent

our beliefs about η. These are useful for modelling more complicated systems, as it in-

volves multiple parameters that are regarded to be connected in some way.

In general, we consider constructing a hierarchical structure where parameters are con-

ditional on some hyperparameters and we set plausible prior distributions on these. For

modelling football, we may have the mean number of goals as a parameter to estimate

and make this condition on factors that we believe this is dependent on, e.g. attack and

defence skill of the teams.

9

(a) A non-hierarchical model (b) A simple hierarchical model

Figure 1: Non-hierarchical and hierarchical models

Gelman et al. (2014, p.101) stated that hierarchical models are more important in prac-

tice, as non-hierarchical models are usually inappropriate for some data, as fewer param-

eters generally cannot fit large datasets accurately and with more parameters there may

be problems with ‘overfitting’, which is the process where the model fit is too close to

the data and has inferior predictive capabilities for new data. However, with hierarchical

models, the model has enough parameters to fit the data well while having some depen-

dency structure on the parameters to avoid problems with overfitting.

Note, while using a hierarchical model, assumptions are made about the dependency of

different parameters. As stated above, in the area of causality theory, DAGs are used to

represent causal relationships.

One definition of independence between two random variablesX and Y is that if Pr(X, Y) =

Pr(X)Pr(Y), then X is independent to Y (Rice, 1995, p.35). Further, suppose we have

three random variables X, Y and Z, then we say that X and Y are conditionally inde-

pendent given Z if and only if Pr(X, Y |Z) = Pr(X |Z)Pr(Y |Z) (Pearl et al., 1989, p.33).

By using DAGs, we can use several graphical criteria such as d-separation, the Back- and

Front-door criterion; see Pearl (1985 & 2009) to extract information implied by DAGs

about the conditional dependencies between random variables. This is important to us,

since in previous works on predicting football games, there has been a debate whether

or not to assume independence between goals scored by the home and away team (see

Section 4). However, by using a hierarchical model, we do not need to use a bivariate

distribution to model the goals scored. Later in Sections 5 and 6, where we discuss two

different Bayesian hierarchical models to model the goals scored by the home and away

team, we will see the dependency structure of these models imply a form of correlation

between the observed variables (i.e. the goals scored by teams), as they depend on a

common set of unobservable hyper-parameters.

10

Therefore, correlation between the goals scored by the home and away team are taken into

account without the use of a more complicated bivariate distribution. Although we will

not discuss the methods or criteria to show conditional independence between random

variables from DAGs, we note that the Bayesian hierarchical models shown in Sections

5 and 6 will assume independent distributions for the home and away goals scored in a

match, but the dependency structure implied by the hierarchical model will imply there

is a conditional independence between the two observed variables. For more information

on causal relationships induced by DAGs, see Pearl (1985, 2009) and Pearl et al. (1989).

11

3 Markov Chain Monte Carlo

In this section, we describe methods for computing posterior distributions that are oth-

erwise intractable to solve analytically. In Bayesian inference, we use Bayes’s Theorem

to obtain the posterior density, which requires integration to find the constant of propor-

tionality (or normalisation constant), since

π(θ | x) =
π(x | θ)π(θ)

π(x)

=
π(x | θ)π(θ)∫

Θ
π(x | θ)π(θ)dθ

.

For more complicated posterior distributions, this often becomes more difficult to work

with via analytic examination (Ravenzwaaij et al., 2018, p.144) and so alternative meth-

ods to estimate this are needed. Further, Barp et al. (2017) state that even when the

value of the normalisation constant is known, sampling from π is challenging, particu-

larly in high dimensions. Markov Chain Monte Carlo (MCMC) introduced by Metropolis

et al. (1953), allows sampling from distributions with intractable normalisation. The

Metropolis algorithm (discussed in Section 3.3.1) was introduced to tackle problems in

physics with the aim to compute the expected value of physical quantities. This algo-

rithm was later generalised by Hastings (1970) to give the Metropolis-Hastings algorithm

(discussed in Section 3.3) and can be used to obtain a sample from a target distribution.

The normalisation constant is a key quantity in Bayesian statistics, since it is needed to

obtain other quantities, such as the posterior mean and the predictive distribution. In

this report, we will be using MCMC sampling methods, in particular Hamiltonian Monte

Carlo (HMC), which is used in the Stan modelling language (Stan Development Team,

2017) to automatically apply HMC to a given Bayesian model. This section starts off

with some definitions of Markov chains and general Monte Carlo methods to develop the

framework for MCMC sampling and then we will present the HMC algorithm.

3.1 Markov Chains

Markov Chain Monte Carlo is a method based on drawing values of θ from approximate

distributions and correcting these to have a better approximation to the target posterior

distribution (Gelman et al., 2014, p.275). The simulation sampling is sequential, meaning

that the distribution of the sampled draws only depends on the last value drawn - hence

the draw forms a Markov chain.

The definition of a Markov process is given by Cook and Upton (2014): “a Markov process

is a stochastic process X = {X1, X2, ...} for which the value taken by random variable

Xt, for all t > 2, is independent of X1, X2, ..., Xt−2, but may depend on Xt−1.”

12

This is the Markov property and so a sequence of random variables X1, X2, ... form a

Markov process if

Xt+1 ⊥⊥ {Xt−1, Xt−2, ..., X1} |Xt, for all t.

If the random variables Xt for t = 1, 2, ... are discrete and take values in some set S, then

the process is a Markov chain.

The transition probability, pij, of a Markov chain is the probability that a Markov chain

in state i ∈ S at time t−1, is in state j ∈ S at time t (Cook and Upton, 2014) and so the

transition probabilities can be associated with a matrix P (called the transition matrix)

having elements pij defined as

pij = Pr(Xt = j |Xt−1 = i) for i = 1, ..., n and j = 1, ...n.

A Markov chain is irreducible if the state space S is all connected, meaning for all i, j ∈ S,

there exists some t such that pij(t) ≥ 0, where pij(t) denotes the probability of transi-

tioning from i to j in t steps. Cook and Upton (2014) says that a state is recurrent (or

persistent) if, starting from that state, the probability of ever returning to it is equal to

1. A recurrent state with a finite expected time until return is called a positive recurrent

(or an ergodic state). Roberts (1996, p.46) states that an irreducible chain X is called

aperiodic if for all i ∈ S,

greatest common divider {t | pii(t) > 0} = 1,

where pii(t) denotes the probability of returning to state i in t number of steps. If a

Markov chain is aperiodic and positive recurrent, then it is called ergodic.

Geyer (2011, p.5) states that a stochastic process X = {X1, X2, ...} is stationary if for

every positive integer k, the distribution of (Xt+1, ..., Xt+k) does not depend on t. For a

Markov chain, if there exists a vector π = (πi ≥ 0, 0 ≤ i ≤ n), where
∑n

i=1 πi = 1, such

that πP = π, then π is called the stationary distribution of the Markov chain (Fishman,

1996, p.339). Note that in some Markov chains, there can be a number of different

stationary distributions, but if a Markov chain is irreducible and positive recurrent, then

π is the unique stationary distribution of the Markov chain. Roberts (1996, p.47) notes

that for an aperiodic positive-recurrent Markov chain, the stationary distribution is the

limiting distribution of successive iterates from the chain and this is true regardless of the

starting value of the chain. Fishman (1996, p.340) notes that this is also sometimes called

the equilibrium or steady-state distribution of the chain.

13

The idea behind Markov chain Monte Carlo simulation (Bart et al., 2017, p.2) is to gener-

ate samples from the target density, π(θ | x), which are approximately i.i.d. (independent

and identically distributed) by creating a Markov chain whose stationary distribution is

the target distribution with density π(θ | x), and the simulation is run enough times so

the distribution of the draws is close enough to this stationary distribution. Robert &

Casella (2004, p.268) defines a MCMC method for simulation of a distribution π as any

method to produce an ergodic Markov chain whose stationary distribution is π. Hence, if

we can find such a Markov chain, we can start the chain at any starting point and make

sure the simulation is run for long enough that the probability of being in state θ is given

by the target density. Gelman et al. (2014, p.275) states that the key to the success of

MCMC to approximate target distributions is not the Markov property, but rather that

the approximate distributions are improved at each step in the simulation, in the sense

of converging to the target distribution.

3.2 Monte Carlo methods

Numerical integration is the study of how the numerical value of an integral can be found

(Davis & Rabinowitz, 2007, p.1). In numerical integration, the integral of a function f

is evaluated by computing the value of the function at a finite number of points. The

estimate becomes more accurate by increasing the number of points where the function

f is evaluated. As Gelman et al. (2014, p.261) note, numerical integration methods can

be divided into stochastic (or simulation) methods such as Monte Carlo, which we will

discuss here, and deterministic methods (see Davis & Rabinowitz, 2007). Now, consider

the evaluation of the following integral,

E[f(θ)] =

∫
Θ

f(θ)π(θ)dθ, (5)

where π(θ) is some probability density, and f(θ) is some function. Note that this integral

is the expectation of the function f(θ). In a Bayesian setting, if π(θ) is the posterior

density, then an integral of this form is the posterior expectation of the function f(θ).

Rasmussen & Chahramani (2002, p.1) states the Classical Monte Carlo approximation to

the above integral:

∫
Θ

f(θ)π(θ)dθ ≈ 1

T

T∑
t=1

f
(
θ(t)
)

= FT ,

where θ(t) are random simulated draws from π(θ), and this converges to the true value

of the integral in the limit of large numbers of samples, T . This estimate is stochastic,

since it depends on generated random numbers and so stochastic methods are based on

obtaining random samples, θt, from the desired distribution π(θ).

14

The variance of the Monte Carlo approximation can be estimated from the sample (θ(1), ..., θ(T))

through the following formula given by Weinzierl (2000, p.12):

Var(Ft) ≈
1

T − 1

T∑
t=1

(f(θt)−FT)2 (6)

There are several Monte Carlo methods to produce independent samples, such as direct

simulation, rejection sampling and importance sampling. The following subsections de-

scribes such methods and are given by Gelman et al. (2014), Murray (2007) and Robert

(2010). Here, we describe these methods to produce a random sample of size 1 and note

that these can be repeated to draw larger samples.

3.2.1 Rejection Sampling

Suppose we want to obtain a single draw from a density, π(θ | x), in rejection sampling

(also known as acceptance-rejection sampling (Lee, 2004, p.267)), we draw samples using

another distribution, g(θ), from which we can already sample. We require g(θ) to be

a positive function defined for all θ where π(θ | x) > 0. The method also requires the

ability to evaluate the probability density of points under both of the distributions up to

proportionality. Moreover, the importance ratio is given by π(θ | x)
g(θ)

and it is required that

it must be bounded above, that is, there is some constant M for which π(θ | x)
g(θ)

≤M for all

θ (this implies that π(θ | x) ≤Mg(θ)).

Then to obtain a random draw from π(θ |x), the rejection sampling algorithm is as follows:

1. Sample θ at random from the probability density proportional to g(θ).

2. Calculate the importance ratio, π(θ | x)
Mg(θ)

.

3. Draw a uniform number, u, from (0, 1).

4. If u < π(θ | x)
Mg(θ)

, accept θ as a draw from π(θ | x), otherwise, reject θ as a draw and

return to step 1.

Murray (2007, p.22) identifies that the more closely g(θ) matches π(θ | x), the lower the

rejection rate can be made and in the ideal situation where g is proportional to π, then

every draw is accepted.

To show how rejection sampling works, suppose that we want to obtain an independent

sample for θ, where θ ∼ Beta(4,2). Then for rejection sampling, we need to draw samples

from another distribution, g(θ), where we can find a constant M such that π(θ) ≤Mg(θ)

for all θ. Here, we can use a uniform density between 0 and 1, so g(θ) = 1 for θ ∈ (0, 1).

Figure 2 shows a plot of the density for a Beta(4,2) distribution in red and g(θ) in blue.

15

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

Plot of Beta(4,2) density and Uniform(0,1) density

θ

π(
θ)

Beta(4,2)

Uniform(0,1)

Figure 2: Plot of Beta(4,2) and Uniform(0,1) density

To use rejection sampling, we can use any M such that π(θ) ≤ Mg(θ) for all θ. In this

case, M can be any value greater than or equal to 2.109375, since that is the mode of

the Beta(4,2) distribution. Having M = 2.109375 will have the highest acceptance rate

(which is calculated by using Number of samples / Number of iterations required). For

instance, when M = 2.109375, then the acceptance rate was 0.481 to 3dp, whereas when

M = 100, then the acceptance rate was 0.01 to 3dp and this is because the importance

ratio is larger if M is smaller, meaning samples are accepted more often. However, using

different values of M returned similar results - Figure 3 shows a histogram of the accepted

θ values when M = 100. The histogram of accepted θ values when M = 2.109375 was

very similar, so the choice of M only really affects the efficiency of the algorithm. In this

plot, the density for the Beta(4,2) distribution is plotted in red for a comparison.

Histogram of accepted values of θ and Beta(4,2) density

θ

π(
θ)

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 3: Histogram of accepted values of θ with M = 100

The R code used to implement rejection sampling for this example can be found in the

Appendix (Section A).

16

3.2.2 Importance Sampling

Now suppose that we are interested in the posterior expectation of some function f(θ),

but are unable to generate random draws of θ from π(θ | x), so we are unable to evaluate

the integral by a simple average of simulated values, used in the Classical Monte Carlo

approximation, then we can use importance sampling instead.

Consider a probability density g(θ) for which we can generate random draws from, then

the posterior expectation of the function f(θ) can be written as

E(f(θ | x)) =

∫
Θ
f(θ)π(θ | x)dθ∫
Θ
π(θ | x)dθ

=

∫
Θ

[f(θ)π(θ | x)/g(θ)]g(θ)dθ∫
Θ

[π(θ | x)/g(θ)]g(θ)dθ
.

Then an approximation to this can be estimated using S draws θ1, ..., θT from g(θ) using

E(f(θ | x)) =
1
T

∑T
t=1 f(θt)ω(θt)

1
T

∑T
t=1 ω(θt)

=

∑T
t=1 f(θt)ω(θt)∑T

t=1 ω(θt)
,

where the factors, ω(θt) = π(θt | x)
g(θt)

, are known as the importance ratios or importance

weights.

Murray (2007, p.24) states that:

Both rejection sampling and importance sampling require a tractable surrogate

distribution [g(θ)]. Neither method will perform well if maxθ[
π(θ)
g(θ)

] is large: rejection

sampling will rarely return samples and importance sampling will have large variance.

Hence, rather than using the methods described in this section, Markov Chain Monte

Carlo methods can be used instead to sample from distributions that are more complex.

One of these is the Metropolis-Hastings algorithm.

3.3 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm was developed by Metropolis et al. (1953) and after

was generalised by Hastings (1970). The algorithm provides a method for simulating a

Markov chain whose stationary distribution is the specified target distribution, π(θ). We

can use this algorithm to sample from any probability distribution provided that we can

specify the density up to proportionality. We first present the Metropolis algorithm, then

the Metropolis-Hastings algorithm, which generalises the basic Metropolis algorithm.

17

3.3.1 The Metropolis algorithm

The Metropolis algorithm also requires us to find an appropriate proposal distribution (or

jumping distribution, which is used by Gelman et al. (2014)). In the Metropolis algorithm,

the proposal distribution must be symmetric, which means that it satisfies the condition,

f(x, y) = f(y, x) or f(x |y) = f(y |x). For example, consider the normal density evaluated

at x with mean y and variance σ2,

f(x | y) =
1√

2πσ2
e−

1
2σ2

(x−y)2 ,

where x, y ∈ R. Then the normal density is symmetric since,

f(x | y) = f(y | x) =
1√

2πσ2
e−

1
2σ2

(y−x)2 .

Then the Metropolis algorithm for a density π(θ|x) with a proposal density q(θ|φ) = q(φ|θ)
is initialised by setting the number of required samples, N , and starting point, θ0, for which

π(θ0 | x) > 0, then for t = 1, 2, ..., N ,

1. Sample a proposal θ∗ from the proposal distribution at time t, q(θ | θt−1).

2. Calculate the acceptance ratio,

A =
π(θ∗ | x)

π(θt−1 | x)

3. Draw a uniform number, u, from (0, 1).

4. If u < A, set θt = θ∗, otherwise set θt = θt−1

So when θt = θt−1, this means that the proposal is rejected, but it still counts as an

iteration in the algorithm. This means that the choice of the proposal distribution is

important in the Metropolis algorithm, since if the variance of the proposal distribution

is too large, the chain may get stuck and will not explore the distribution well. But if

the variance is too small, the chain may take very long to converge. The details of why

the Metropolis algorithm works to provide sequence of iterations θ1, θ2, ... that converges

to the target distribution, π(θ | x), is given by Voss (2014, pp.114-115) and Gelman et al.

(2014, p.279).

3.3.2 Discarding early iterations and effective sample size

If the chain is not sampling from the specified distribution efficiently, then it is said to

be mixing poorly. For MCMC algorithms, the idea is to sample a Markov chain whose

18

stationary distribution is the target distribution and so a problem with not discarding any

early iterations is that at the start of the chain, the chain may not yet have reached this

stationary distribution (Geyer, 1992, p.480). For the Metropolis and Metropolis-Hastings

algorithms, it does not matter where the starting point is, given the proposal distribution

has large enough variance and the number of iterations is large enough so the chain can

explore the distribution well. To remove the influence of starting values, we generally

discard a proportion of the first few values in the chain. The practice of discarding early

iterations in the Markov chain simulation is referred to as the warm-up (Gelman et al.,

2014, p.282) and the number of iterations needed for the chain to converge is called the

burn-in period.

Note that the sample is not an independent sample. The effective sample size, N∗, of the

chain of length N can be estimated using:

N∗ =
N

1 + 2
∑N−1

k=1 ρk
,

where ρk is the estimated autocorrelation at lag k.

3.3.3 The Metropolis-Hastings algorithm

In the Metropolis algorithm it was required that an appropriate proposal distribution was

found and the proposal density must be symmetric. Now for the Metropolis-Hastings

algorithm, the proposal density, q(θ | φ), need no longer be symmetric. Hence for the

Metropolis-Hastings algorithm remains the same as the Metropolis except the acceptance

ratio is now

A =
π(θ∗ | x)q(θt−1 | θ∗)
π(θt−1 | x)q(θ∗ | θt−1)

.

To understand the Metropolis-Hastings algorithm and why it works, we first need to define

the concept of detailed balance, which is an important property of certain Markov chains.

Fishman (1996, p.341) gives the following definition: a Markov chain with state space S
and transition probabilities pij satisfies the detailed balance property (with respect to π)

if

πipij = πjpji, for all i, j ∈ S,

If a Markov Chain satisfies the detailed balance condition, then it is called π-reversible.

Further, Voss (2014, p.114) notes that satisfying the detailed balance property is a stronger

condition for a Markov chain than having a stationary distribution and proves that if a

19

Markov chain, X, is π-reversible, the π is a stationary distribution of X. In addition,

Voss (2014, pp.114-115) proves that the process X constructed in the Metropolis-Hastings

algorithm is a π-reversible Markov chain with stationary distribution π.

Note that in this notation, we assume that the state space of X of the Markov chain and

our desired target density is discrete, but the algorithm works also in continuous state

spaces also (see Voss 2014, p.110).

3.3.4 An example of the Metropolis-Hastings algorithm in R

To illustrate the implementation of the Metropolis-Algorithm, we will use an example

that can be found analytically so we can assess the accuracy of the algorithm. For this

example, consider the following model

Y | λ ∼ Poisson(λ),

λ ∼ Gamma(2, 2).

Since λ ∼ Gamma(2, 2), then

π(λ) ∝ λe−2λ.

Additionally, consider that we have some data, y = (2, 8, 7, 1, 0), then as π(y |λ) ∝ l(λ;y)

and the likelihood here is

l(λ;y) =
λ2e−λ

2!

λ8e−λ

8!

λ7e−λ

7!

λ1e−λ

1!

λ0e−λ

0!

∝ λ18e−5λ,

then by Bayes’s Theorem, the posterior density is

π(λ | y) ∝ π(y | λ)π(λ)

∝ λ19e−7λ.

In Bayesian analysis, a conjugate analysis is where the posterior density has the same

form as the prior. Hence by conjugacy, the posterior distribution is given by

λ | y ∼ Gamma(20, 7),

and therefore, the posterior mean for λ is given by λ̂ = 20
7
≈ 2.8571 to 4dp (since the

mean of a Gamma(α, β) distribution is given by α
β
).

20

The proposal density used in this example is chosen to be the Gamma(4, 2) distribution,

but note that this could be any proposal density in theory as long as the variance is ap-

propriate and the chain runs long enough. The R code used to implement the Metropolis

algorithm for this example can be found in the Appendix (Section B).

In order to use the Metropolis algorithm, we first sample a proposal λ∗ from the pro-

posal distribution and calculate the acceptance ratio. Here, the acceptance ratio for this

example would be of the form,

A =
λ∗19e−7λ∗q(λt−1)

λ19
t−1e

−7λt−1q(λ∗)

where q(λ) is the proposal density for λ, which is the Gamma(4, 2) density here. Note

that in order to avoid computational overflows or underflows, we can use logarithms of

densities wherever it is possible and we should only use exponentials only when necessary.

Hence, when implementing this Metropolis algorithm, when we draw a uniform number,

u, from (0, 1), we now compare log(u) with log(A) to decide whether or not to keep the

proposed value of λ, where log(A) is given by

log(A) = 19log(λ∗)− 7λ∗ + log(q(λt−1))− (19log(λt−1)− 7λt−1 + log(q(λ∗)))

Figure 4a shows the trace plot for the parameter λ, which shows the value of λ at each

iteration of the algorithm. As we can see, this plot looks like random noise as it is sam-

pling from the posterior density effectively. Here, we set the number of required samples,

N = 10000, so by looking at the mean of the values between 1000 and 10000 (using 1000

as the burn-in period), then the posterior mean was found to be 2.853 (to 3dp), which

is very close to the analytical solution. Note that the starting point does not matter for

the Metropolis-Hastings algorithm, as long as the proposal distribution has large enough

variance and the number of iterations (length of the chain) is long enough. For instance,

in Figure 4b, we start the algorithm from 100, and we can see that it quickly moves

downwards towards the correct value of λ. When the starting point was set to 100, the

posterior mean calculated was 3.870 (to 3dp). By using the values of λ after discarding

early iterations, we are able to obtain various summary statistics about λ, such as the

posterior mean, posterior median and credible intervals.

To illustrate the importance of finding an appropriate proposal distribution, then suppose

we use a folded normal distribution with mean λt−1 for t = 1, 2, ..., N and variance σ2 that

we will choose different values for (a folded normal distribution is just the absolute value of

the regular distribution so only has positive values, since λ > 0 for a Poisson distribution).

21

0 2000 4000 6000 8000 10000

1
2

3
4

5
6

MCMC Trace Plot for λ

t

λ

(a) Starting point set to 1

0 2000 4000 6000 8000 10000

0
20

40
60

80
10

0

MCMC Trace Plot for λ

t

λ

(b) Starting point set to 100

Figure 4: Metropolis-Hastings MCMC trace plots for λ with proposal distribution a

Gamma(4, 2) distribution

Figure 5 shows the different trace plots for λ for different values of σ2 with all chains

starting from at 10. In Figure 5a, σ2 = 0.001 and we can see that the chain takes a long

time (∼ 7000 iterations) to reach the posterior distribution. Hence, from having a smaller

variance for the proposal, then the warm-up period is longer here. If we only discard the

first 1000 values, the posterior mean from this chain is 4.435 (to 3dp). However, if we set

the warm-up period to 6000 then the posterior mean of values between 6000 and 10000

in the chain was 2.549 (to 3dp). While this is still not close enough to the true value of

the posterior mean (2.8571), this is a better approximation by taking only the last 4000

values in the chain.

0 2000 4000 6000 8000 10000

2
4

6
8

10

MCMC Trace Plot for λ

t

λ

(a) σ2 = 0.001

0 2000 4000 6000 8000 10000

2
4

6
8

10

MCMC Trace Plot for λ

t

λ

(b) σ2 = 1

0 2000 4000 6000 8000 10000

2
4

6
8

10

MCMC Trace Plot for λ

t

λ

(c) σ2 = 10000

Figure 5: Metropolis-Hastings MCMC trace plots for λ with proposal distribution a folded

normal distribution with mean 0 and variance σ2

Now, if we choose σ2 = 1, then we can see from Figure 5b, the chain reaches the posterior

distribution much quicker and the warm-up period is much shorter. If the variance is too

large, as it is in Figure 5c, where σ2 = 10000, the chain can get stuck at various points

and the acceptance rate is much lower, as the proposal distribution will propose values

22

that are far away from the previous value. Therefore, we can see that when the variance

is too large, the chain does not mix well and it does not explore the posterior distribution

effectively.

3.4 Hamiltonian Monte Carlo

The Stan modelling language (Stan Development Team, 2017, p.390) utilises the Hamil-

tonian Monte Carlo (HMC) algorithm and its adaptive variant, the no-U-turn sampler

(NUTS) (see Gelman & Hoffman, 2011). Betancourt & Girolami (2013, p.2) state that

although the Metropolis algorithm and the Gibbs sampler (not discussed here, but see

Voss, 2014, p.141) are straightforward to implement in many models, their performance

are limited by their incoherent exploration. This means that an inefficiency of these

algorithms is their random walk behaviour, which can explore the target distribution ex-

tremely slowly. This can be seen in Figure 5a, where the chain can take a long time

moving through the target distribution, since the variance of the proposal density was

too small. The HMC algorithm is described by Gelman et al. (2014) and Betancourt and

Girolami (2013) but is translated into the notation that we have been using so far and

more steps are added where it is not immediately obvious where values or equations come

from. Before presenting the algorithm, we first introduce some ideas from Hamiltonian

dynamics.

3.4.1 Hamiltonian dynamics

Hamiltonian Monte Carlo uses Hamiltonian dynamics to suppress the local random walk

behaviour exhibited in the Metropolis algorithms and this allows it to move much more

rapidly through the target distribution. The Metropolis-Hastings algorithm presented in

Section 3.3.3 is useful since it will always converge to the correct target distribution, given

that the chain is long enough. However, as illustrated in the example shown in Section

3.3.4, if the variance of the proposal density is too small, the chain makes very small steps

and takes a long time to explore the target distribution. But if the variance is too large,

the chain may get stuck at points since there are more samples being rejected. Hence

the issue with the Metropolis-Hastings algorithm is its random-walk behaviour and this

is very important in high-dimensional cases. Suppose that the target distribution has

100 dimensions, then at each step the algorithm must choose a direction to go in. Intu-

itively, we can see that guessing a good direction in so many directions is very difficult

and therefore sampling high-dimensional distributions using the Metropolis-Hastings al-

gorithm becomes very inefficient.

In contrast, the methods in HMC are built upon a rich theoretical foundation that makes

it uniquely suited to the high-dimensional problems of applied interest (Betancourt, 2017,

p.3). However, since the theoretical underpinnings of HMC are formulated in terms of

23

differential geometry, we will only present the general ideas and intuition of Hamiltonian

dynamics and some reasons for the success of Hamiltonian Monte Carlo.

Neal (2011, p.114) gives the physical analogy of a hockey puck sliding on a frictionless sur-

face of varying height to explain Hamiltonian dynamics. The state of this system consists

of the position of the puck, given by a two-dimensional vector θ, say, and the momen-

tum of the puck (mass × velocity), given by a two-dimensional vector φ. Moreover, the

potential energy (the stored energy in an object due of its position or its configuration)

of the puck is proportional to the height of the surface at the given position and the ki-

netic energy (the energy which the puck possesses because of its motion) is equal to
|φ|2
2m

,

where m is the mass of the puck. If the surface is level, then the puck moves at constant

velocity, equal to the momentum divided by the mass,
φ
m

. If the puck encounters a rising

slope, then the puck’s momentum allows it to continue to move, with the kinetic energy

decreasing and potential energy increasing until the point where the kinetic energy of the

puck is equal to zero. At this point, the puck will slide back down and the kinetic energy

increases and potential energy decreases.

It is noted by Betancourt (2017, p.3) that Hamiltonian Monte Carlo was initially called

Hybrid Monte Carlo and the method was used to tackle calculations within Lattice field

theory simulations of quantum chromodynamics, which is a field focused on understanding

the structure of protons and neutrons. However, in non-physical applications of Hamil-

tonian Monte Carlo such as Bayesian analysis, in the above analogy, the position θ of

the puck corresponds to the variables of interest, θ = (θ1, ..., θd), where d is the number

of parameters of interest. The potential energy will be minus the log probability density

for these variables and a momentum variable, φ = (φ1, ..., φd), will be introduced to the

problem artificially.

This analogy can be used to help understand the idea behind HMC, but these can also

be understood by using a set of differential equations called Hamilton’s equations.

3.4.2 Hamilton’s equations

Suppose we have a d-dimensional position vector θ and a d-dimensional momentum vector,

φ, and so the full state space has 2d dimensions. A function of θ and φ that describes

the system is known as the Hamiltonian, H(θ,φ). Then the partial derivatives of the

Hamiltonian, H, determine how θ and φ change over time, t, according to Hamilton’s

equations (Neal, 2011, p.115):

24

dθi
dt

=
∂H

∂φi
dφi
dt

= −∂H
∂θi

,

(7)

for i = 1, ..., d.

For Hamiltonian Monte Carlo, we usually use Hamiltonian functions (or the Hamiltonian)

that can be written as

H(θ,φ) = T (φ) + V (θ),

where T (φ) is the kinetic energy, which is defined as minus the log probability density

of the multivariate normal distribution with mean vector 0 and covariance matrix Σ and

V (θ) is the potential energy, which will be defined as minus the log probability density

of the distribution for θ that we wish to sample from.

3.4.3 Hamiltonian Monte Carlo algorithm

Neal (2011, p.113) notes, Hamiltonian dynamics can be applied to most problems with

continuous state spaces by simply introducing a ‘momentum’ variable. In HMC, for each

component θj in the target space, a momentum variable, φj, is added and are both updated

together in a Metropolis algorithm, where j = 1, ..., d. The proposal distribution for θ is

now largely determined by the momentum variable, φ. Hence, in HMC, we introduce an

auxiliary momentum variable, φ, that is introduced only to enable the algorithm to move

faster through the parameter space. The aim of HMC is to obtain draws from a density,

π(θ), for parameters θ. In a Bayesian setting, this target density is usually the posterior

density, π(θ | x) given some data x. HMC draws from a joint density

π(φ,θ | x) = π(φ | θ, x)π(θ | x)

= π(φ)π(θ | x), since φ is independent to θ.

In this algorithm, we simulate from this joint distribution, but we are only interested in

the simulations of θ.

In Stan and most applications of HMC, φ is given a multivariate normal distribution

with mean vector 0 and covariance matrix Σ (φ has the same dimension as θ, since every

parameter θj has a momentum variable φj for j = 1, ..., d),

φ ∼ Nd(0,Σ), where d is the dimension of θ.

25

In Stan, the covariance matrix Σ is commonly set to be diagonal or the identity matrix

but it can be estimated from the warm-up samples.

The negative logarithm of the joint density for π(φ,θ | x) defines a Hamiltonian (Betan-

court and Girolami, 2013, p.4),

H(φ,θ | x) = −log π(φ,θ | x)

= −log (π(φ)π(θ | x))

= −log π(φ)− log π(θ | x)

= T (φ) + V (θ | x),

where T (φ) = −log π(φ) is the kinetic energy and V (θ |x) = −log π(θ |x) is the potential

energy of the parameter (or particle/puck), θ.

A transition to a new state of parameters are generated in two steps before accepting

or rejecting the new step using the Metropolis acceptance ratio, defined in Section 3.3.1.

Firstly, we sample from the auxiliary momenta,

φ ∼ Nd(0,Σ).

Following this, current parameter values θ and φ evolve via Hamilton’s equations, which

are given in equation 7,

dθ

dt
=
∂H

∂φ
=
∂T

∂φ
,

dφ

dt
= −∂H

∂θ
= −∂T

∂θ
− ∂V

∂θ
.

The momentum density for φ is independent of the target density and so Hamilton’s

equations become,

dθ

dt
=
∂T

∂φ
,

dφ

dt
= −∂V

∂θ
.

This leaves a system of partial derivatives to be solved. For a computer implementation of

this, Hamilton’s equations must be approximated by discretising time (Neal, 2011, p,120)

and by using some small stepsize, ε. In the Stan programming language, the numerical

integration algorithm used to provide stable results for Hamiltonian systems of equations

is the leapfrog algorithm (or leapfrog integrator) (Stan Development Team, 2017, p.392).

26

3.4.4 The Leapfrog algorithm

The leapfrog algorithm takes discrete steps of size ε and alternates half-step updates of

the momentum vector, φ, and full-step updates of the position vector, θ:

φ← φ+
ε

2

dφ

dt
,

θ ← θ + ε
dθ

dt
,

φ← φ+
ε

2

dφ

dt
.

Suppose that a d-dimensional random variable X follows a multivariate normal distribu-

tion with mean vector µ and covariance matrix Σ, then its joint probability density is

given by Chatfield & Collins (1980, p.28) and is of the form,

f(x) =
1

(2π)d/2|Σ|1/2
exp
[
− 1

2
(x− µ)TΣ−1(x− µ)

]
.

Then since T (φ) = −log (π(φ)) and φ ∼ Nd(0,Σ), then

π(φ) =
1

(2π)d/2|Σ|1/2
exp
[
− 1

2
φTΣ−1φ

]
,

and so by taking logs and partially differentiating with respect to φ, we find that

dθ

dt
=
∂T

∂φ
= Σ−1φ.

Further, since V (θ | x) = −log π(θ | x), then we just have

dφ

dt
= −∂V

∂θ
=
dlog π(θ | x)

dθ
.

Therefore, the leapfrog algorithm takes discrete steps of some small time interval ε and

updates the momentum and position using

φ← φ+
ε

2

dlog π(θ | x)

dθ
,

θ ← θ + εΣ−1φ,

φ← φ+
ε

2

dlog π(θ | x)

dθ
.

The algorithm is called a ‘leapfrog’, since it is splitting the momentum updates into half

steps and is a discrete approximation to physical Hamiltonian dynamics where the posi-

tion and momentum evolve in continuous time (Gelman et al., 2014, p.302).

27

We then apply L leapfrog steps so a total of Lε time is simulated. Now label the value

of the momentum and parameter vectors at the start of the leapfrog process as θt−1,

φt−1, then the state of the simulation after L such steps is denoted as (φ∗,θ∗). In the

accept-reject step, we compute the acceptance ratio (Neal, 2011, p.125):

A = exp (−H(φ∗,θ∗ | x) +H(φt−1,θt−1 | x))

Then since H(φ,θ | x) = T (φ) + V (θ | x) = −log π(φ)− log π(θ | x), then

A = exp
(
− T (φ∗)− V (θ∗ | x) + T (φt−1) + V (θt−1 | x)

)
= exp

(
log π(φ∗) + log π(θ∗ | x)− log π(φt−1)− log π(θt−1 | x)

)
Then by rearrangement, the acceptance ratio for the HMC algorithm is given by

A =
π(θ∗ | x)π(φ∗)

π(θt−1 | x)π(φt−1)
,

where π is the density for the momentum vector φ. Therefore, in this algorithm, by using

Hamiltonian dynamics, we propose a new state for the momentum and position, (φ∗,θ∗),

Then as we had in the Metropolis and Metropolis-Hastings algorithm in Section 3.3, then

we draw a uniform number, u, from (0, 1) and if u < A, we set the next value in the

iteration, θt = θ∗, otherwise we set θt = θt−1. Therefore, since we do not care about the

momentum φ itself, it gets immediately updated at the beginning of the next iteration

so there is no need to keep track of the values of φ at each step.

3.4.5 Summary of the Hamiltonian Monte Carlo algorithm

Hamiltonian Monte Carlo is an MCMC algorithm that makes use of gradient information

to avoid the random walk behaviour exhibited in other popular MCMC algorithms such

as the Metropolis-Hastings algorithm. The method is based on ideas from Hamiltonian

dynamics, which allows the chain to move quicker towards the target distribution.

To summarise, the Hamiltonian Monte Carlo algorithm is initialised by setting the number

of required samples, N , and starts with a specified initial set of parameters θ0. In Stan,

this value can be specified by the user or is generated randomly. Then for t = 1, 2, ..., N ,

the algorithm is as follows:

1. Sample a new momentum vector from φ ∼ Nd(0,Σ).

28

2. Update the current value of the parameters, θt−1 and φt−1, is updated using the

leapfrog algorithm with discretisation time ε and number of steps L using:

φ← φ+
ε

2

dlog π(θ | x)

dθ
,

θ ← θ + εΣ−1φ,

φ← φ+
ε

2

dlog π(θ | x)

dθ
.

3. Label the value of the parameters after L leapfrog steps as θ∗ and φ∗.

4. Calculate the acceptance ratio,

A =
π(θ∗ | x)π(φ∗)

π(θt−1 | x)π(φt−1)
,

5. Draw a uniform number, u, from (0, 1).

6. If u < A, set θt = θ∗, otherwise set θt = θt−1

3.4.6 Tuning parameters in HMC and Adaptive HMC

The Hamiltonian Monte Carlo algorithm can be tuned in three places:

1. The probability distribution of the momentum vector φ (usually assumed to be

multivariate normal),

2. The scaling factor, ε, of the leapfrog steps,

3. The number of leapfrog steps, L.

The sampling efficiency of the algorithm can be very sensitive to these tuning parameters

(for more information about these tuning parameters and the effect they have on HMC,

see Hoffman & Gelman, 2011; Gelman et al., 2014; Neal, 2011).

Stan is able to automatically optimise ε, estimate Σ based on the warm-up sample iter-

ations and adapt the number of leapfrog steps, L, at each iteration (Stan Development

Team, 2017, p.394). Therefore, rather than fixing the number of steps L, the number

of leapfrog steps can be adapted at each iteration. This is done by using the no-U-turn

sampling (NUTS) algorithm (for more details about NUTS, see Gelman & Hoffman, 2011).

29

3.4.7 An example of the Hamiltonian Monte Carlo algorithm in R

We now illustrate an example of Hamiltonian Monte Carlo in R (see Appendix, Section C

for R code) and apply it to the model discussed in Section 3.3.4. Consider the following

model,

Y | λ ∼ Poisson(λ),

λ ∼ Gamma(2, 2),

and consider we have some observed data, y = (2, 8, 7, 1, 0). Then as we found in Section

3.3.4, by conjugacy, the posterior distribution is given by

λ | y ∼ Gamma(20, 7),

and the posterior mean for λ is given by λ̂ = 20
7
≈ 2.8571 to 4dp.

Since this is only a one-dimensional case, then distribution of the momentum vector, φ,

is just the univariate normal distribution with mean 0 and variance σ2. To initiate the

Hamiltonian Monte Carlo algorithm, we need to choose values for ε, L and σ2. As noted

in Section 3.4.6, in the Stan modelling language, these parameters are automatically op-

timised and the number of leapfrog steps L is adapted at each iteration by the use of

the NUTS algorithm. However, for this implementation, a fixed L and ε is chosen for

simplicity.

Recall for HMC, the momentum and the values of the parameters are updated using the

leapfrog algorithm, which requires the calculation of the derivative of the log posterior

density and the inverse of the covariance matrix Σ. In this one-dimensional case, the

inverse is elementary and is just 1
σ2 . For the derivative of the log posterior density, recall

the posterior density is given by

π(λ | y) ∝ λ19e−7λ.

Then by taking logarithms and differentiating with respect to λ, we find that

dπ(λ | y)

dλ
=

19

λ
− 7λ.

Hence the leapfrog steps to update the momentum and variable λ in this example are

30

φ← φ+
ε

2

(19

λ
− 7λ

)
,

θ ← θ +
ε

σ2
φ,

φ← φ+
ε

2

(19

λ
− 7λ

)
.

Next in the HMC algorithm, we need to calculate the acceptance ratio, which in this case

is given by

A =
λ∗19e−7λ∗q(φ∗)

λ19
t−1e

−7λt−1q(φt−1)
,

where q is the density for a N(0, σ2) distribution. In implementing the algorithm, we use

the log densities to calculate the acceptance ratios. Therefore, when deciding whether

or not keep the new proposed value of λ and making a single draw from a Uniform(0,1)

distribution to get u, we compare log(u) with log(A), which is given by

log(A) = 19log(λ∗)− 7λ∗ + log(q(φ∗))− (19log(λt−1)− 7λt−1 + log(q(φt−1))) (8)

Figure 6 shows the trace plots for λ when using the HMC algorithm to obtain a posterior

sample for λ if we initially start from λ = 10. Here, we set σ2 = 100 and ε = 0.5 and

choose different values for L. If L = 1, meaning there is only one leapfrog step at each it-

eration, then we can see from 6a that the chain converges slower to the target distribution,

since there were not enough leapfrog steps for λ to move through the parameter space.

However, if L is increased to 100, as in Figure 6b, then λ reaches the target distribution

much quicker and explores the posterior distribution well.

Since this is only a one-dimensional example to illustrate how the Metropolis-Hastings

algorithm (see 3.3.4) and HMC algorithm can be implemented, we cannot clearly see

the advantages of HMC over the Metropolis-Hastings algorithm here. However, in higher

dimensions, HMC allows for the parameters of interest, θ, to move much quicker through-

out the parameter space. While in some MCMC methods such as the Gibbs sampler (not

discussed here) and the Metropolis-Hastings algorithm, where the simulations can take a

long time to reach the target distribution, HMC suppresses the random walk behaviour

in order to allow it to move quicker to the target distribution by using ideas from physics

and adding a momentum variable. The random walk behaviour in Figure 6a is due to the

small number of leapfrog steps and because the example is only in one dimension, which

limits the effect of introducing the momentum variable.

31

0 2000 4000 6000 8000 10000

2
4

6
8

10
MCMC Trace Plot for λ

t

λ

(a) Number of leapfrog steps, L = 1

0 2000 4000 6000 8000 10000

2
4

6
8

10

MCMC Trace Plot for λ

t

λ

(b) Number of leapfrog steps, L = 100

Figure 6: HMC trace plots for λ with ε = 0.5, σ2 = 100 and different number of leapfrog

steps

32

4 Modelling football scores

The statistical modelling of sports has become increasingly popular and more data is now

being collected in sports. Companies such as Opta and Prozone deliver data specifically

designed to help with the coaching and scouting of players (Anderson & Sally, 2014).

Maher (1982) used an independent Poisson distribution to model goals and estimated

averages for each team to predict football scores on a game by game basis. He used maxi-

mum likelihood estimation to find estimates for the attack and defence parameters for the

home and away team, which would contribute to the mean of the Poisson distribution.

Maher also noted the benefits of a bivariate Poisson model, which he showed had a better

fit to goals data for the English Division 1 between 1971 and 1974. Several researchers

such as Lee (1997) and Karlis & Ntzoufras (2000) have shown relatively low correlation

between the number of goals scored by the two opponents. However, Karlis & Ntzoufras

(2003) note the use of bivariate distributions has been ignored in most modelling ap-

proaches, as it demands more sophisticated techniques and they then proposed to use a

bivariate Poisson distribution to model goals scored. Further, Dixon and Coles (1997) also

decided to use the Poisson distribution, although they did not assume independence of

goals scored by the home and away team. Additionally, their model did not assume that

the team’s performance is constant over time as with Maher’s model (1982) by introducing

a time-decay function and constructed a ‘pseudolikelihood’ so that historical information

had less value than more recent information. This helped to address the dynamic nature

of each team’s abilities and incorporated some information about the form of a team.

Most of the above work mentioned follow a frequentist framework, where they treat un-

known quantities as fixed that are to be estimated. However, Karlis & Ntzoufras (2007)

worked on this problem further by using the Skellam’s distribution (the difference of

two independent Poisson random variables with different means) and used Bayesian and

Markov Chain Monte Carlo (MCMC) methods to obtain predictive distributions of goal

differences. Baio & Blangiardo (2010) proposed a Bayesian hierarchical model for the

number of goals scored by two teams in a match and used the Poisson distribution to

model the goals scored for each team. This model will be looked more closely in Section

5 and is implemented in the Stan modelling language to assess the model and to have

a short analysis of the 2016/17 season. Further, Suzuki et al. (2010) used a Bayesian

approach for predicting match outcomes of 2006 World Cup games.

All of the models discussed briefly above rely on the assumption that the marginal distri-

butions for goals for the home and away teams are Poisson distributed and they attempt

to estimate the expected number of goals scored by the two opposing teams. For instance,

models developed by Maher (1982), Dixon and Coles (1997), Karlis & Ntzoufras (2003)

and Baio & Blangiardo (2010) all have used the Poisson distribution to model the goals

33

scored by both teams. However, the Poisson distribution might be inadequate to model

goals well and improvements can be made, and in Section 4.1, we investigate this assump-

tion further.

It is important to note, while some researchers have decided to use a bivariate model,

as Karlis & Ntzoufras (2003) did, others have used an independent model. However, it

seems plausible that a bivariate model is more appropriate to account for the dependency

between the two teams scoring output, since when one team is winning, we can see in

many situations, the opposing team will attack more in attempt to get back in the game.

As briefly noted in Section 2.6, since we will be using a Bayesian hierarchical model, there

is no need to use a bivariate distribution, since there will be conditional independence

between the variables for the number of goals scored by the home and away team. We

will see in Sections 5 and 6, the hierarchical structure of the model developed Baio &

Blangiardo (2010) and the Negative Binomial model that we develop imply a form of

correlation between the goals scored by the home and away team.

All code to assess distributional fits can be found in the Appendix (Section D and E).

4.1 Poisson or not Poisson?

A histogram of goals scored by the home and away team in a game for the last 10 full

seasons of the Premier League (from 2007/08 to 2016/17) is shown in Figure 7. The blue

bars show the Poisson distribution probability values for each goal, where the parameter

λ is the mean number of home or away goals per game (the maximum likelihood estimate

for λ). In this section, we use maximum likelihood estimation for parameters, since we are

just using this as an exploratory analysis to determine a suitable distribution to model

the number of goals scored by the home and away teams.

0 1 2 3 4 5 6 7 8 9

Observed
Poisson

Home Goals per game (2007/08 − 2016/17)

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

0 1 2 3 4 5 6 7

Observed
Poisson

Away Goals per game (2007/08 − 2016/17)

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 7: Histogram of number of home (left) and away (right) goals per game

34

To assess the distributional fit, in frequentist statistics, hypothesis tests are generally used

and here we will use this approach since it is a standard assessment process and they can

be useful as a tool for exploratory analysis. Although we will not be using them to accept

or reject a null hypothesis, we can use the test statistics and conclusions from the tests

for comparison between different distributions. One such test is the Chi-squared (χ2)

goodness of fit test. The χ2 test statistic is calculated using the following formula

χ2
t =

n∑
k=1

(Ok − Ek)2

Ek
,

where where Ok are the observed values from the data, Ek are the expected values from

the proposed distribution (in this case, the Poisson distribution) and n is the number of

observations. In such tests, a null hypothesis is proposed. For the distribution of goals

scored by the home team, consider the null hypothesis:

H0 : Dist. of Home Goals (07/08 - 16/17) follows a Poisson(λ = 1.55) distribution,

H1 : Dist. of Home Goals (07/08 - 16/17) does not follow a Poisson(λ = 1.55) distribution.

In this test, assuming the null hypothesis true, the χ2 test statistic follows a χ2 distri-

bution, with d degrees of freedom, where d = number of groups - number of estimated

parameters. We then obtain a p-value, which is defined as the probability under the null

hypothesis of obtaining a result equal to or more extreme than what was actually observed

(Dahiru, 2008, p.22). However, it is important to note that these goodness of fit tests are

designed to test if the proposed distribution is true and therefore almost always fail with

enough data, as George Box notes, “all models are wrong” (1976, p.792). Further, Lin

et al. (2013, p.906) states “a key issue with applying small-sample statistical inference

[such as the χ2 test] to large samples is that even minuscule effects can become statistical

significant” - this is known as the p-value problem, according to Lin et al. (2013). To

illustrate, consider the above hypothesis, then since there are 10 groups (0, 1,..., 9), then

the degrees of freedom is d = 10− 1 = 9 and the p-value obtained was 1.049× 10−9.

Hence, due to the extremely low p-value, we reject the null hypothesis that the distribu-

tion of home goals follows a Poisson(λ = 1.55) distribution. The reason for the large χ2
t

test statistic obtained and resulting low p-value is that we have a large number of games.

Table 1 shows the expected number of home goals under a Poisson distribution where

the parameter λ is estimated by the mean number of home goals, which is 1.55 (to 3sf),

and the observed number of home goals. From Table 1, we can see these are quite sim-

ilar. Additionally, the expected probabilities from the Poisson distribution fall within 3

standard errors about the observed probabilities. However, we can see that a Poisson dis-

tribution underestimates the number of games where the home team does not score a goal.

35

Note that we estimated the standard errors (SE) using the following formula,

SE(p) ≈
√

1

n− 1
(p− p2),

where p is the observed proportion of home goals per game. To find this equation, we

use the Monte Carlo estimate for the variance, shown in equation 6. In this case, we set

f(x) = I(x), where I(x) is the indicator function for the events of interest, A say, i.e. the

function for goals in a game. The indicator function is defined as

I(x) =

1, if x ∈ A

0, if x /∈ A

Then note that E[I(x)2] = E[I(x)] = Pr(A), and if we denote the observed proportion

using p, then Var(p) ≈ 1
n−1

(p− p2).

Home Goals Exp. Prob Obs. Prob Exp. Freq Obs. Freq Obs. + 3SE Obs. - 3SE

0 0.211 0.228 803.8 868 0.249 0.208

1 0.329 0.318 1248.6 1208 0.341 0.295

2 0.255 0.248 969.8 941 0.269 0.227

3 0.132 0.128 502.2 487 0.144 0.112

4 0.051 0.051 195.0 193 0.061 0.040

5 0.016 0.016 60.6 60 0.022 0.010

6 0.004 0.007 15.7 28 0.012 0.003

7 0.001 0.002 3.5 9 0.005 0.000

8 0.0002 0.0013 0.7 5 0.0031 -0.0005

9 0.00003 0.00026 0.1 1 0.00105 -0.00052

Table 1: Table of the expected and observed probabilities and frequencies of home goals

scored (2007/08 - 2016/17) under a Poisson(λ = 1.55) distribution

However, if we repeat this test with just one season to evaluate the fit of a Poisson distri-

bution to model the goals scored by the home team, the goodness of fit test suggests that

the Poisson distribution is a good fit to the data. Figure 8 shows histograms of home and

away goals scored for the 2016/17 Premier League season, where the blue bars show the

Poisson probability values for each goal, where the parameter λ is the mean number of

home or away goals per game.

For the marginal home goals for the 2016/17 season, the mean number of home goals were

1.60 (to 3sf), and so consider a goodness of fit test with the null hypothesis:

H0 : Dist. of Home Goals (16/17) follows a Poisson(λ = 1.60) distribution,

H1 : Dist. of Home Goals (16/17) does not follow a Poisson(λ = 1.60) distribution.

36

0 1 2 3 4 5 6

Observed
Poisson

Home Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

0 1 2 3 4 5 6 7

Observed
Poisson

Away Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

Figure 8: Histogram of number of home (left) and away (right) goals per game for 2016/17

season

Table 2 shows the expected number of goals under a Poisson(λ = 1.60) distributon and

the observed home goals scored in the 2016/17 season. Then the χ2 test statistic calcu-

lated was χ2
t = 4.0528, with d = 7− 1 = 6 degrees of freedom and so the p-value obtained

was 0.6695. Hence, as 0.6695 > 0.10, we do not have enough evidence to reject the null

hypothesis at the 10% level. Hence, when only one season was used to evaluate the fit of

a Poisson distribution to the data, the null hypothesis was not rejected, whereas it was

rejected when more data were used. As stated above, χ2 tests will fail with enough data,

since a model will never be perfect and therefore, we must be careful to not use the good-

ness of fit test results solely to determine which distribution we wish to use. However, for

exploratory analysis, we can still use these tests to give us some indication of how well

the distribution fits to the data before we start to build a model. Using these with the

help of visual representation of the distributional fits, such as the ones in Figures 7 and

8, can help us decide which distribution to use to model the number of goals scored by

the home and away team.

The summary of the results of the χ2 goodness of fit test of a Poisson distribution to

home goals scored in the 2016/17 season and the last 10 full seasons are summarised in

Table 3.

Now we focus our attention on the distribution of away goals. The mean number of goals

scored by the away team per game for the last 10 seasons between 2007/08 and 2016/17

was 1.16 (to 3sf) and so consider the null hypothesis:

H0 : Dist. of Away Goals (07/08 - 16/17) follows a Poisson(λ = 1.16) distribution,

H1 : Dist. of Away Goals (07/08 - 16/17) does not follow a Poisson(λ = 1.16) distribution.

37

Home Goals Exp. Prob Obs. Prob Exp. Freq Obs. Freq Obs. + 3SE Obs. - 3SE

0 0.203 0.218 77.0 83 0.282 0.155

1 0.324 0.321 123.0 122 0.393 0.249

2 0.259 0.224 98.3 85 0.288 0.159

3 0.138 0.150 52.3 57 0.205 0.095

4 0.055 0.063 20.9 24 0.101 0.026

5 0.018 0.016 6.7 6 0.035 -0.003

6 0.005 0.008 1.8 3 0.022 -0.006

Table 2: Table of the expected and observed probabilities and frequencies of home goals

under a Poisson(λ = 1.60) distribution for the 2016/17 Premier League season

Data χ2-Statistic df p-value Outcome

2007/08 - 2016/17 Seasons 60.552 9 1.049× 10−9 Reject at the 0.01% level

2016/17 Season 4.0528 6 0.6695 Do not reject at the 10% level

Table 3: Values of the χ2 test statistic for the home goals scored for the Poisson(λ) model

Table 4 shows the expected number of home goals under a Poisson distribution(λ = 1.16)

and the observed number of away goals scored in the last 10 full seasons of the Premier

League. The χ2 test statistic is calculated as χ2
t = 45.46 with d = 8 − 1 = 7 degrees of

freedom and the p-value obtained was 1.112× 10−6. Hence, we reject the null hypothesis,

H0, at the 0.01% level. As with the model for the home goals, the Poisson distribution

underestimates the number of games for which the away team does scores no goals.

Now consider the marginal distribution of away goals scored in games for the 2016/17

season and consider a goodness of fit test with the following null hypothesis:

H0 : Dist. of Away Goals (16/17) follows a Poisson(λ = 1.20) distribution,

H1 : Dist. of Away Goals (16/17) does not follow a Poisson(λ = 1.20) distribution.

Then the χ2 test statistic calculated was χ2
t = 24.487, with 7 degrees of freedom and so

the p-value obtained was 0.0009. Hence, we reject this null hypothesis at the 0.01% level.

Hence, although we cannot reject the hypothesis that the home goals for the 2016/17

season follows a Poisson distribution, the χ2 test suggests that we should reject the hy-

pothesis that the away goals scored in the 2016/17 season follow a Poisson distribution.

Further, again we can see visually from the histogram of the number of home and away

goals per game shown in Figure 8 that the Poisson distribution does not have a great fit

to the data, especially for the away goals, where it underestimates the number of games

where the away team scores no goals and overestimates the number of games where the

away team scores 1 or 2 goals. Table 6 summarises the χ2 goodness of fit test results for

testing the fit of the Poisson distribution to model the number of away goals scored.

38

Away Goals Exp. Prob Obs. Prob Exp. Freq Obs. Freq Obs. + 3SD Obs. - 3SD

0 0.314 0.342 1192.9 1300 0.365 0.319

1 0.364 0.337 1382.1 1279 0.360 0.314

2 0.211 0.196 800.7 744 0.215 0.176

3 0.081 0.087 309.3 329 0.100 0.073

4 0.024 0.028 89.6 105 0.036 0.020

5 0.005 0.008 20.8 30 0.012 0.004

6 0.0011 0.0032 4.0 12 0.0059 0.0004

7 0.00017 0.00026 0.7 1 0.00105 -0.00052

Table 4: Table of the expected and observed probabilities and frequencies of away goals

scored (2007/08 - 2016/17) under a Poisson(λ = 1.16) distribution

Away Goals Exp. Prob Obs. Prob Exp. Freq Obs. Freq Obs. + 3SD Obs. - 3SD

0 0.300 0.344 114.2 131 0.418 0.272

1 0.361 0.326 137.3 124 0.399 0.254

2 0.217 0.189 82.6 72 0.250 0.129

3 0.087 0.079 33.1 30 0.121 0.037

4 0.026 0.050 10.0 19 0.084 0.016

5 0.006 0.005 2.4 2 0.016 -0.006

6 0.001 0.002 0.5 1 0.011 -0.005

7 0.0002 0.0026 0.1 1 0.011 -0.005

Table 5: Table of the expected and observed probabilities and frequencies of home goals

under a Poisson(λ = 1.20) distribution for the 2016/17 Premier League season

Data χ2-Statistic df p-value Outcome

2007/08 - 2016/17 Seasons 45.46 7 1.112× 10−6 Reject at the 0.01% level

2016/17 Season 24.487 7 0.0009 Reject at the 0.01% level

Table 6: Values of the χ2 test statistic for the away goals scored for the Poisson(λ) model

Hence, from what we have seen in this section, the general assumption made by many

researchers that goals follow a Poisson distribution seems inadequate to properly model

the distribution of goals. It is possible that the reason for this is that in the models

proposed, it is more ‘natural’ to think of parameters, such as the attack and defence

estimates for a team contributing to the parameter λ, which is the mean, and maximum

likelihood estimates are much easier to obtain for a Poisson model. In comparison, for

other distributions, such as the negative binomial, which takes two parameters, the size

n and probability p, it can be that these are much harder to think about and to estimate

these. As Karlis & Ntzoufras (2000) note, “given the complicated nature of the negative

binomial distribution and especially the difficulty in estimating parameters, it is plausible

to use the simpler Poisson model”.

39

In the following subsections, we look at other possible distributions to model home and

away goals per game, such as the zero-inflated Poisson distribution, the negative binomial

distribution and we also propose a Geometric-Poisson mixture distribution.

4.2 Alternative distributions for goals scored in football

4.2.1 Zero-Inflated Poisson distribution

The Zero-Inflated Poisson model is made from two components that correspond to two

zero generating processes. Hall (2000, p.1032) defines the Zero-Inflated Poisson model as

Y ∼

0 with probability ω,

Poisson(λ) with probability (1− ω).

Hence Y has a probability distribution function

Pr(Y = y) =

ω + (1− ω)exp(−λ) if y = 0,

(1− ω)
λyexp(−λ)

y!
if y > 0.

If a random variable Y follows a Zero-Inflated Poisson distribution with parameters ω

and λ, then we write Y ∼ ZIP(ω, λ).

In Section 4.1, we highlighted that a problem with using a Poisson distribution to model

the goals scored by the home or away team in the Premier League was that it seemed to

underestimate the number of games that resulted in the home or away team scoring no

goals. Hence, we test the use of the Zero-Inflated Poisson distribution to see if by inflating

the probability of the event of no goals will result in a better fit to the data. Here, ω is

the probability of extra zeros.

Mean and Variance

The mean and variance for the Zero-Inflated Poisson distribution are given by

E[Y] = (1− ω)λ,

Var[Y] = λ(1− ω)(1 + ωλ).

Maximum Likelihood Estimation for ZIP Distribution

The of the maximum likelihood estimates for ω and λ are given by

40

ω̂ =
r − e−λ

n(1− e−λ)
,

(1− e−λ)
n∑
i=0

yi = λ̂(n− r)

The derivation of these results can be found in the Appendix in Section F. Note here that

the maximum likelihood estimate for λ requires numerical methods to solve.

To assess the fit of a zero-inflated Poisson distribution to home goals and away goals

scored in the Premier League, we use the Rfast package (Papadakis et al., 2017) in R,

where it uses a Newton-Raphson algorithm to maximise the log-likelihood. We use the

Rfast package to obtain maximum likelihood estimates in the next subsection to assess

the fit of a Zero-Inflated Poisson distribution to home and away goals for the 2016/17

season to compare with the Poisson distribution.

Using the Zero-Inflated Poisson distribution to model goals

Now we assess the fit of a Zero-Inflated Poisson distribution to home and away goals in

the Premier League. Figure 9 shows the histogram of home and away goals scored in

the 2016/17 Premier League season, where the red bars show the observed proportion of

goals scored and the blue bars show the proportions given by the Zero-Inflated Poisson

distribution, where its parameters are found by using maximum likelihood estimation and

numerical optimisation by the Rfast package in R.

Looking at the 2016/17 season, we see that the Zero-Inflated Poisson distribution offers

a better fit than the regular Poisson distribution, especially for the distribution of away

goals scored in each game. For the Poisson distribution, the conclusion from the χ2 test

was that it suggested that a Poisson distribution was not a good fit to the observed dis-

tribution of away goals, since the test rejected that the distribution of the away goals

followed a Poisson distribution at the 0.01% level. However, here for the Zero-Inflated

model, we do not have enough evidence to reject the null hypothesis and the χ2 statistic

was calculated to be 11.21 with the Zero-Inflated Poisson distribution and so we do not

reject the null hypothesis, that the distribution of away goals does follow a Zero-Inflated

Poisson distribution, at the 10% level. However, there is still room for improvement.

If we compare this to Figure 8, then we can see visually that the Zero-Inflated Poisson has

a better fit to the data, especially for goals 0 and 1. However, the Zero-Inflated Poisson

model still does not have a completely great fit to the data, as we can see in the results

of the goodness of fit tests (where the null hypothesis is that the data follows a ZIP(ω, λ)

distribution), which are summarised in Table 7.

41

By looking at the results a goodness of fit test for the 2016/17 season, we see that the ZIP

distribution offers a much better fit than the Poisson model does. We found in Section 4.1

that the Poisson model seems to underestimate the number of games where the home and

away teams score no goals and so the Zero-Inflated Poisson model adjusts this and makes

for a better distribution fit to the data compared to the regular Poisson distribution.

0 1 2 3 4 5 6

Observed
ZIP

Home Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

0 1 2 3 4 5 6 7

Observed
ZIP

Away Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

Figure 9: Histogram of number of home (left) and away (right) goals per game for 2016/17

season and comparison to a Zero-Inflated Poisson Distribution fit

Home or Away Dist. χ2-Statistic df p-value Outcome

Home ZIP (0.033, 1.65) 2.7981 6 0.8337 Do not reject at the 10% level

Away ZIP (0.121, 1.37) 11.21 7 0.1297 Do not reject at the 10% level

Table 7: Values of the χ2 test statistic for the goals scored for the ZIP(ω, λ) model

4.2.2 Geometric-Poisson Mixture distribution

McLachlan and Peel (2004, p.6) note that given probability functions π1, ..., πn and weights

ω1, ..., ωn with ωi ≥ 0 for all i and
∑

i ω1 = 1, then the random variable Y has a mixture

distribution with a density of the form:

f(y) =
n∑
i=1

ωiπi(y).

The quantities ω1, ..., ωn are called the mixing proportions. Using this, we now propose a

Geometric-Poisson mixture distribution, which is defined as

z ∼ Bernouilli(ω)

Y |ω, z = 0 ∼ Geometric(p)

Y |λ, z = 1 ∼ Poisson(λ)

42

and we write

Y | λ, p, ω ∼ Geom-Poi(λ, p, ω).

So the probability distribution function for Y is

Pr(Y = y) = ωp(1− p)y + (1− ω)
λye−λ

y!

Mean and Variance

For the Geometric-Poisson mixture distribution, the mean and variance are given by

E[Y] =
ω(1− p)

p
+ λ(1− ω)

Var[Y] = ω(1− p)
(2

p2
− 1

p

)
− ω2(1− p2)2

p2
+ λ(1− ω)(1 + ωλ)− 2ωλ(1− p)(1− ω)

p
.

The derivation of these results can be found in the Appendix (Section G).

Maximum Likelihood Estimation for the Geometric-Poisson Distribution

Now consider a sample y = (y1, ..., yn) of independent and identically distributed random

variables Yi | λ, p, ω ∼ Poi-Geom(λ, p, ω). Then the likelihood function l(λ, p, ω; y) of the

sample is given by

l(λ, p, ω; y) =
n∏
i=1

Pr(Y = yi)

=
n∏
i=0

(
ωp(1− p)yi + (1− ω)

λyiexp(−yi)
yi!

)
And then the log-likelihood, L(λ, p, ω; y) = log l(λ, p, ω; y), is given by

L(λ, p, ω; y) = nlog
[n∑
i=0

ωp(1− p)yi + (1− ω)
λyiexp(−yi)

yi!

]
Then this cannot be solved analytically and requires numerical optimisation. However,

we can get estimates by approaching this in a Bayesian way and use MCMC methods and

RStan to obtain posterior means for each variable.

43

Using the Geometric-Poisson distribution to model goals

We try a mixture distribution of the Geometric distribution and the Poisson distribution

to model goals for the same reason as we try the Zero-Inflated Poisson. The Poisson model

seems to be a relatively good fit, besides the fact that it underestimates the number of low

scoring games. Hence, as the probability mass function for the Geometric distribution is

strictly decreasing and has highest probability at 0, then we try a mixture distribution

and test the fit of this distribution to the data for the 2016/17 season in this section.

As stated in the previous subsection, the likelihood function requires numerical optimisa-

tion to maximise and hence find the maximum likelihood estimates. Alternatively, using a

Bayesian approach to solve this problem, we will propose prior distributions for each of the

parameters, ω and λ and then use Stan to carry out an MCMC computation and use the

posterior means as point estimates for the parameters. The prior distributions proposed

for p and ω were Uniform(0,1) distributions to encode ignorance and a Gamma(3.80, 2.52)

distribution was proposed for λ and was chosen using the MATCH Uncertainty Elicita-

tion Tool (Morris et al., 2014), which allows you fit distributions to your beliefs about a

parameter. The prior distributions chosen for each parameter were as follows:

ω ∼ Uniform(0,1)

p ∼ Uniform(0,1)

λ ∼ gamma(3.80, 2.52)

The Stan and R code to find posterior means as point estimates for the parameters can

be found in the Appendix (Section E).

Figures 10 shows the histogram of home and away goals scored in the Premier League

for the 2016/17 season. Visually, we can first note that the Geometric-Poisson mixture

distribution does not seem to be a good fit to the data, despite the fact that it passes some

of the χ2 goodness of fit tests. Table 8 summarises the results of the χ2 test for the home

and away goals for the 2016/17 season, under the null hypothesis that the distribution of

the goals follow a Geometric-Poisson distribution against the alternative hypothesis that

it follows a different distribution. In comparison to the Zero-Inflated Poisson distribution,

we can see that this is a worse fit and so we will not be using this distribution further

in our model. We chose to test this distribution, since we hoped that the combination of

the Poisson distribution to the Geometric would increase the probability of zero and one

goals scored, however, we can see from Figure 10 that the Geometric-Poisson distribution

still underestimates the number of low scoring games.

44

0 1 2 3 4 5 6

Observed
Geometric−Poisson

Home Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

0 1 2 3 4 5 6 7

Observed
Geometric−Poisson

Away Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

Figure 10: Histogram of number of home (left) and away (right) goals per game for

2016/17 season and comparison to a Geometric-Poisson Distribution fit

Home or Away Dist. χ2-Statistic df p-value Outcome

Home G-P(0.08, 0.63, 1.67) 2.645 6 0.8519 Do not reject at the 10% level

Away G-P(0.28, 0.61, 1.38) 9.617 7 0.2113 Do not reject at the 10% level

Table 8: Values of the χ2 test statistic for the goals scored for the Geom-Poi(λ, p, ω) model

4.2.3 Negative Binomial distribution

In R (The R Core Team, 2017, p.1457), the negative binomial distribution with size n

and probability p density is defined as

p(x) =
Γ(x+ n)

Γ(n)x!
pn(1− p)x =

(x+ n− 1)!

(n− 1)!x!
pn(1− p)x

for x = 0, 1, 2, ..., n, where n > 0, 0 < p ≤ 1 and Γ(x) is the Gamma function, defined by

Γ(x) = (x− 1)!, where x is an integer.

If a random variable Y follows a negative binomial distribution with size n and proba-

bility p, then we write Y ∼ NB(n, p). The use of the negative binomial distribution to

model goals data has been proposed by several authors, such as Maher (1982) and Karlis

& Ntzoufras (2003). However, the use of it in models to predict goals has been largely

ignored in relevant literature, perhaps due to its more complicated nature in comparison

to the Poisson distribution. Now we assess the fit of the negative binomial distribution

to the data.

The mean of the negative binomial distribution is E[Y] = µ = n(1−p)
p

and the variance is

given by Var[Y] = n(1−p)
p2

= µ
p

(The R Core Team, 2017).

45

Using the Negative Binomial distribution to model goals

Figure 11 shows the histogram of home and away goals scored in the Premier League

2016/17 season, where the blue bars are the probability of each goal under the negative

binomial distribution and the red bars are the observed proportions of games for each

number of goals scored. The parameters n and p were estimated using maximum likeli-

hood estimation for simplicity.

0 1 2 3 4 5 6

Observed
Negative Binomial

Home Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

0 1 2 3 4 5 6 7

Observed
Negative Binomial

Away Goals per game 2016/17

Goals

P
ro

po
rt

io
n

of
 G

am
es

0.
00

0.
10

0.
20

0.
30

Figure 11: Histogram of number of home (left) and away (right) goals per game for

2016/17 season and comparison to a Negative Binomial Distribution fit

From visually looking at the fit, we can see that the negative binomial distribution seems

to offer the closest fit compared to the other distributions that have been tried and the

away goals seem to modelled very well using this distribution - much better than the fits

offered by the Poisson and Zero-Inflated Poisson distributions. Table 9 summarise the

χ2 goodness of fit tests for the home and away goals, under the null hypothesis that the

distribution of goals follow a negative binomial distribution, and we see that the results

from these tests suggests that the negative binomial is a good fit to the data.

Home or Away Dist. χ2-Statistic df p-value Outcome

Home NB(1.60, 22.5) 2.4614 6 0.8728 Do not reject at the 10% level

Away NB(1.20, 4.66) 5.3356 7 0.6191 Do not reject at the 10% level

Table 9: Values of the χ2 test statistic for the goals scored for the NB(µ, n) model

Since it seems that the negative binomial distribution offers the closest fit to goals data,

we will proceed to build a Bayesian hierarchical model using the negative binomial dis-

tribution in Section 6.

46

5 An analysis of the 2016/17 Premier League Season

In this section, we discuss a model given by Baio & Blangiardo (2010) and implement this

model in Stan and use the results to have a short analysis of the 2016/17 Premier League

season. Baio & Blangiardo (2010) propose a Bayesian hierarchical model for the number

of goals scored by the two teams in a match. Recall from Section 2.6, in hierarchical

models, observable outcomes are modelled conditionally on other parameters known as

hyperparameters.

5.1 Baio & Blangiardo’s (2010) Bayesian hierarchical model

In this paper, yg1 and yg2 are used to denote the number of goals scored by the home and

the away team in the g-th game of the season. In order to allow for direct comparison

to Karlis & Ntzoufras’s work (2003), Baio & Blangiardo considered the Italian Serie A

1991/1992 season. We will implement this model and consider the 2016/2017 Premier

League season. In this model , the vector of observed counts, y=(yg1, yg2) is modelled as

independent Poisson,

ygj | θgj ∼ Poisson(θgj),

where θ=(θg1, θg2) represent the scoring intensity for the g-th game for the team playing

at home (j = 1) and away (j = 2). Baio & Blangiardo assume a log-linear random effect

model:

log θg1 = home+ atth(g) + defa(g)

log θg2 = atta(g) + defh(g)

The parameter home represents the advantage for the home team and it is assumed to be

constant for all teams. To illustrate the need for a parameter to represent the advantage

for playing at home, in the last 10 full seasons of the Premier League, 46.13% of games

were won by the home team, 25.45% resulted in a draw and 28.12% ended with an away

win. Since there is a much larger proportion of games resulting in a home win, this sug-

gests that there is definitely an advantage for playing at home.

The parameters att and def represent the attacking and defensive abilities for each team

and are indexed by h(g) and a(g), which identify the team that is playing home or away in

the g-th game of the season. Theses indexes are uniquely associated with one of the teams

in the league. For instance, ordering the teams in the Premier League alphabetically, then

Arsenal are the first team and the index 1 will always be associated with Arsenal. Table

10 shows how the games in 2016/17 season will be indexed using these parameters.

47

g Home Team Away Team h(g) a(g) yg1 yg2

1 Burnley Swansea 3 16 0 1

2 Crystal Palace West Brom 5 19 0 1

3 Everton Spurs 6 17 1 1

...

379 Swansea West Brom 16 19 2 1

380 Watford Man City 18 10 0 5

Table 10: The data for the Premier League 2016/17 season

Now using a Bayesian approach, prior distributions for all the random parameters in the

model need to be specified. In this model, approximately flat prior distributions are used

to encode ignorance. For the home advantage parameter,

home ∼ N(0, 10000)

The priors for the attack and defence parameters for each team, t = 1, ..., T , where T is

the number of teams, are

attt | µatt, τatt ∼ N
(
µatt,

1

τatt

)
,

deft | µdef , τdef ∼ N
(
µdef ,

1

τdef

)
.

Then to impose identifiability constraints on the team-specific parameters, Baio & Blan-

giardo use a sum-to-zero constraint:

T∑
t=1

attt = 0,
T∑
t=1

deft = 0.

Finally, approximately flat prior distributions are used to model hyper-priors for the

attack and defence effects,

µatt ∼ N(0, 10000)

µdef ∼ N(0, 10000)

τatt ∼ Gamma(0.1, 0.1)

τdef ∼ Gamma(0.1, 0.1)

To summarise, the model for the number of goals scored by two teams, yg1 and yg2 for

the home and away team in the g-th game, respectively, is

yg1 | home, atth(g), defa(g) ∼ Poisson(exp(home+ atth(g) + defa(g)))

yg2 | atta(g), defh(g) ∼ Poisson(exp(atta(g) + defh(g)))

48

A graphical representation of this model is shown in Figure 12.

Figure 12: The DAG representation of Baio & Blangiardo’s model (2010)

From this graphical representation of the model, the inherent hierarchical structure im-

plies a form of correlation between the observable variables yg1 and yg2 by means of

the unobservable hyper-parameters η = (µatt, µdef , τatt, τdef) (Baio & Blangiardo, 2010).

Therefore, the components of η represent a structure that the model assumes to be com-

mon for all games played in a season that contributes to the average scoring rate for the

teams playing.

Therefore, as stated in Section 2.6, by using a Bayesian hierarchical model, there is no

need to use a bivariate distribution to model the goals since the hierarchical structure of

the model shown by the DAG in Figure 12, implies the goals scored by home and away

team are conditionally independent and so correlation is taken into account.

5.2 Implementation of Baio & Blangiardo’s model (2010)

The code to implement this model in Stan can be found in the Appendix (Section H) and

the posterior summary statistics are presented in a table in Section H.4. As there are

so many posterior parameters in this model, we will illustrate the MCMC procedure in

Stan and its results by looking at just the home effect parameter. Figures 22a, 22b, 22c

and 22d (which can all be found in the Appendix in Section H.3) shows the histogram,

kernel density plot, trace plot and autocorrelation (ACF) plot for the home parameter,

respectively. These plots are found by using the shinystan package (Gabry et al., 2017)

in R. The histogram and kernel density plots show how the home parameter was explored

in the MCMC chains and we can see that the mean turned out to be 0.3826, which lies

very near to the maximum of the kernel density. This also shows that there is definitely

an advantage for teams playing games at home grounds, as the 95% credible interval is

49

[0.298, 0.465] to 3sf. By a simple hypothesis test, we found that the posterior probability

of the home parameter to be greater than 0 was 100%, since there were no samples that

were less than 0. The trace plot in Figure 22c shows the proposed value of the parameters

at each iteration of the algorithm; the plot looks like random noise hence the sample is

exploring the posterior density effectively, as required. The ACF plot in Figure 22d cuts

off at lag 1, which is ideal for MCMC methods.

From this model, we interpret a higher attt parameter to mean the team has a better

ability to score but interpret a higher deft parameter to mean that the team is worse

at defending, as a positive deft parameter means that the team contributes to the op-

position scoring more goals. Hence by looking at the posterior summary results shown

in the Appendix (Section H.4) and the posterior parameter plots shown in 13, then we

can see that Tottenham Hotspurs seem to have had the best attack and defence in the

league in the 2016/17 season, despite not winning the league. Chelsea were the Premier

League winners in 2016/17 and from this model had the second best attack in the league

and the third best defence, behind Spurs and Manchester United. On the other end of

the spectrum, Middlesbrough and Sunderland had noticeably poor posterior attacking

and defence parameters and so it is no surprise that they eventually got relegated to the

Championship at the end of the season.

Figure 13: Posterior parameter plots for the attack and defence parameters

An alternative visualisation of these posterior summary results is shown in Figure 14.

Here, we plot the posterior means for the attack parameter against the defence parameter

for each team. Note that this plot does ignore information about the variance of each

parameter since it only plots the posterior means, but since the variances for these pa-

rameters are quite small, then this is fine to use.

50

These kinds of plots can be useful in sports analytics, since we can start to look at the

characteristics for each team. Football teams may use these plots to look for potential

areas for improvement and to assess the strengths and weaknesses of other teams. For

example, from the plot, we can see that Manchester United (MUN) had the second best

defence in the league according to this model, but their attack parameter was low. Hence,

an area of improvement for Manchester United could be to improve its attacking ability.

However, to take this idea further and make this more useful, one would need to look at

why Manchester United’s attack parameter is so low and could include other factors and

data into the model, for instance, attempts at goal, number of passes or shots on target.

Including these could provide some more information on what areas teams should improve

on and also make the model more extensive to include what parts of football teams are

good at and are bad at. However, for the model that we develop in Section 6, we will

keep the model more simple since the aim of the model is for predicting the outcome of

a football match, not for extensive use in football analytics.

After using the Stan programming language to implement HMC to obtain a sample from

the posterior density, we can use this to obtain other values of interest, such as the

predictive distribution to predict the number of goals scored by a team, or to perform

some Bayesian hypothesis testing. Recall from Section 2 that in the Bayesian approach to

hypothesis testing, we just need to calculate the posterior probabilities. Suppose that we

have two hypotheses, H0 : θ ∈ R (the null hypothesis), and H1 : θ /∈ R, (the alternative

hypothesis), then we just calculate the posterior probabilities,

π0 = π(θ ∈ R | x) and π1 = π(θ /∈ R | x),

and then decide between H0 and H1 accordingly.

Using this idea of hypothesis testing, we can start to compare teams and ask questions

such as “is Manchester United’s defence better than Tottenham’s?”. For these types of

questions, we can obtain an estimate from this model by extracting the sample of draws

in R using the rstan package (Stan Development Team, 2018) and count the number

of times where Manchester United’s defence parameter was lower than Tottenham’s de-

fence parameter (recall a lower defence parameter implies a better defensive ability in

this model). From this implementation of the model, we found that the probability of

Manchester United having a better defence than Tottenham’s in the 2016/17 season was

about 37%.

51

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Team Effects

Attack

D
e

fe
n

c
e

ARS

BOU

BUR

CHE

CRY

EVE

HUL

LEI

LIV

MCI

MUN

MBO

SOU

STO

SUN
SWA

TOT

WAT

WBA

WHU

Good Attack, Good Defence

Bad Attack, Bad Defence

Figure 14: A plot of the posterior means of the attack and defence parameters for each

team

We now show a small example of how we would use this model to start predicting foot-

ball matches and apply this model to try and predict the outcome of a match between

Manchester United and Crystal Palace on the last day of the 2016/17 season. Once we

have a sample from the posterior distribution, we can draw from predictive distribution

of unobserved data or future data, y∗, which are the goals scored by either team in this

case. For each draw of θ, we draw a sample y∗ from the predictive distribution π(y∗ | θ).

In the case of one football match, we take our samples for the home, attack and defence

parameters for both teams and then simulate from a Poisson distribution for each sample

using:

log θ1 = home+ attMUN + defCRY

log θ2 = attCRY + defMUN

Next, we obtain draws from our likelihood, π(y∗j | θj), for j = 1, 2, (from a Poisson

distribution) and then we estimate the probabilities as

52

Pr(Manchester United Win) =
Number of times y∗1 > y∗2

Number of samples
,

Pr(Draw) =
Number of times y∗1 = y∗2

Number of samples
,

Pr(Crystal Palace Win) =
Number of times y∗1 < y∗2

Number of samples
.

From using the data from the 2016/17 season (with the Manchester United vs. Crystal

Palace game removed), the estimate of the probabilities were

Pr(Manchester United Win) = 0.637,

Pr(Draw) = 0.223,

Pr(Crystal Palace Win) = 0.140.

5.3 Model criticisms

A criticism of this model is that the prior distributions that were proposed were too

flat and the variances could have been reduced significantly. Baio & Blangiardo (2010)

used approximately flat prior distributions to encode ignorance. For the µatt, µdef and

home parameters, N(0, 10000) priors were used; with a standard deviation of 100, these

parameters can vary so much that the prior distributions have no discernible impact on

the analyses. By simulating values from the priors, we are able to obtain a pre-posterior

distribution of goals scored by two teams in a match. Recall from Section 2, the prepos-

terior distribution encodes our uncertainty about what data we will observed before any

data is available yet. The R code to simulate these values can be found in the Appendix

(Section H.5). From simulating 10000 games from these distributions, we find that in 9481

games, the home team returned NA values and in 9488 games, the away team returned NA

values. The reason for this is that the number of goals given by the model are too large.

Additionally, the prior distributions came up with games where the away team would

score 446985258 goals. From this we can see that the prior distributions are too flat, since

they imply that almost any score can happen. Although we see that the model seems to

produce sensible results, the original priors are not sensible and the variance of the prior

distributions can be reduced significantly. If more sensible prior distributions were used

with smaller variance, we would be more certain about the distribution of goals apriori.

Baio & Blangiardo (2010) also proposed alternative priors to reduce the effect of over-

shrinkage, which means that extreme occurrences are pulled towards the grand mean.

However, the prior distributions in this model are equally as flat with some changes by

putting truncated normal prior distributions on different teams. We will not be looking

into this model and in the next section, we start to develop a different Bayesian hierar-

chical model.

53

6 Negative Binomial Model

In Section 4, we found that to model the goals scored in the Premier League, alterna-

tive distributions to the Poisson distribution offered a closer fit to the data, such as the

Zero-Inflated Poisson or the negative binomial distribution. In this section, we propose

a different Bayesian hierarchical model for the number of goals scored by two teams in a

match but the main difference is that rather than using a Poisson distribution to model

goals, this model will use the negative binomial distribution.

An alternative parametrization is by the mean µ and size n, which is used in the Stan

documentation (2017); the probability function is given below. In this case, p = n
n+µ

and

the variance is given by µ+ µ2

n
and the probability mass function is given by

p(x) =
(x+ n− 1)!

(n− 1)!x!

(n

n+ µ

)n(µ

µ+ n

)x
.

If a random variable Y follows a negative binomial distribution with mean µ and size n,

then we write Y ∼ NB(µ, n).

In order to start putting prior distributions on random variables, we will use the parametri-

sation of the negative binomial in terms of the mean µ and size n, since this is an alter-

native parametrisation used in Stan and it also seems more natural to propose priors for

the mean when modelling football goals, whereas to try and propose prior distributions

for the probability, p, of a team scoring is less intuitive.

6.1 Negative Binomial Model

In this model, we use yg1 and yg2 to denote the number of goals scored by the home and

away team in the g-th game of the season, respectively. Here, the vector of observed goals,

y = (yg1, yg2) are modelled using a independent negative binomial distribution,

ygj | µgj, nj ∼ NB(µgj, nj),

where µgj = (µg1, µg2) represents the mean number of goals expected to be scored by the

home team (j = 1) and the away team (j = 2) in the g-th game of the season. Similar to

Baio & Blangiardo (2010), we assume a log-linear random effect model, as it allows for

the condition that the mean number of goals must be positive:

log µg1 = home atth(g) + away defa(g)

log µg2 = away atta(g) + home defh(g)

54

A common feature of models for football scores is that the home-effect parameter is con-

stant. In the model proposed by Baio & Blangiardo (2010), the home parameter represents

the advantage for the team playing at home and is assumed to be constant for all teams

in the season. However, this seems too generalised, as some football teams are especially

good at home, whereas for some teams the effect of playing at home does not seem to be as

strong. For example, consider Sunderland in the 2016/17 season; they won only 3 times at

home and scored 16 goals, whereas they only scored 13 away from home and won 3 times.

Hence we can see that the effect of playing at home did not have much significance for

Sunderland, as they did not win at home after the new year. However, for Chelsea, they

did seem to perform better at home than they did away, as they scored 55 goals at home

and 30 in away games for the 2016/17 Premier League season. Although simply looking

at goal scored by a team does not represent how well a team plays and more complicated

metrics are needed to determine whether a constant home-effect parameter is suitable,

it seems that using a constant home-effect parameter does not seem to be adequate to

describe the varying home-effects for different teams. Hence in this model, we will encode

the home effect for each team by separating the attack and defence parameters for each

team into two parameters representing whether or not they are playing at home.

In this way of conditioning the mean number of goals µgj, we are able to encode more

information, as we have now have information on how well a team performs in attack and

defence and also how these vary depending on whether they are playing home or away.

In contrast to Baio & Blangiardo’s model (2010), the attack and defence parameters are

deemed to be equal whether they are playing at home or away and the home-effect is

measured to just add towards the number of goals scored by the home team. This is

because only θg1 is conditioned on the home parameter, whereas θg2 does not. Hence,

the home parameter does not encode any information about much better a team would

defend playing at home. But now this model and its choice of parameters allows for

varying performances in attack and defence for each team and which depends on whether

the team is playing home or away.

These parameters will be indexed in the same way as they were when implementing Baio

& Blangiardo’s model (2010) in Section 5.1. In this model, the prior distributions for

the home and away parameters for the attacking and defensive strengths of each team,

t = 1, ..., T , where T is the number of teams, are

home attt ∼ N(µh att, σ
2
att),

away attt ∼ N(µa att, σ
2
att),

home deft ∼ N(µh def , σ
2
def),

away deft ∼ N(µa def , σ
2
def).

55

To impose identifiability constraints on these parameters, we use a sum-to-zero constraint,

that is,

T∑
t=1

home attt = 0 ,
T∑
t=1

away attt = 0 ,
T∑
t=1

home deft = 0 ,
T∑
t=1

away deft = 0.

Then the prior distributions for the hyperparameters are given as follows:

µh att ∼ N(0.2, 1),

µa att ∼ N(0, 1),

µh def ∼ N(−0.2, 1),

µa def ∼ N(0, 1).

where the slight difference in the mean for the home parameters are used to encode a belief

that teams tend to play better at home. Note that these are vastly different compared

to the prior distributions placed on µatt and µdef in Baio & Blangiardo’s model (2010)

in Section 5. As noted in 5.3, the prior distributions were approximately flat and since

the variance for these parameters were so large, the prior distributions had no discernible

impact on the analyses and the pre-posterior distribution of goals scored given by their

prior distribution were not sensible. However, with these chosen priors, the pre-posterior

distribution of goals scored by home and away team was more sensible with no NA values

returned. The code to simulate from the prior distributions to obtain a pre-posterior

distribution can be found in the Appendix in Section I.3.

The prior distributions for the variance of the attack and defence parameters are:

σ2
att ∼ Gamma(10, 10),

σ2
def ∼ Gamma(10, 10).

Lastly, the prior distributions for the size n in the model are,

nhome ∼ Gamma(2.5, 0.05),

naway ∼ Gamma(2.5, 0.05).

The prior distributions for nhome and naway were chosen to have a large variance, since we

were uncertain about these parameters apriori.

A graphical representation of this model is shown in Figure 15.

56

Figure 15: The DAG representation of the Negative-Binomial Model

6.2 Implementation of the Negative Binomial model in Stan

The code to implement this model in Stan and R can be found in the Appendix (Section

I) and the posterior parameter plots for the attack and defence parameters can be found

in Figures 16 and 17, respectively. Comparing these with the posterior parameter plots

for the model given by Baio & Blangiardo (2010), shown in Figure 13, we can see that

by this way of splitting up the parameters, we are able to see more information about

whether or not a team does seem to play better at home. For instance, before we used

Sunderland as an example of team who does not seem to play better at home and these

plots support this claim since Sunderland had a better attacking parameter for playing

away rather than home. The posterior mean for the home attack parameter was -0.557

and the posterior mean for the away attack parameter for Sunderland was -0.371 (higher

is better for attack). By comparing the posterior samples of the attack parameters for

home and away for Sunderland, from this model, we believe aposteriori that Sunderland

has a better attack at home than away with 27% certainty. However, in defence, the

model suggests that the probability that Sunderland defend better at home is 70%. This

highlights an advantage of splitting the attack and defence parameters for each team,

since we can encode more information about how the teams play at home or away.

Since Figure 16 and 17 captures most of the posterior summary statistics for the attack

and defence parameters in this model illustrating the mean and spread of the data, the

table of the posterior summary statistics can be found in the Appendix instead, in Section

I.4.

57

Figure 16: Posterior parameter plots for the attack parameters for home and away

Figure 17: Posterior parameter plots for the defence parameters for home and away

Figures 18 and 19 plots the posterior mean of the attack parameter against the posterior

mean of the defence parameter for each team playing home and away, respectively. Since

it is better to have a lower defence and higher attack parameter, it is best to be in the

bottom right of the plot, whereas being in the top left of the plot suggests that the team

has a bad attack and a bad defence. Comparing these to the plot given in Figure 14, we

can see again that we can encode more information about team performances by splitting

the attack and defence parameters for home and away. For example, Figure 18 and 19

suggest that Chelsea have the highest attacking parameter while at home but have the

fifth highest attacking parameter when playing away from home. In contrast, from Figure

14, this plot only indicates that Chelsea has the second best attacking parameter, with no

information about how they attack when they are home or away. In Baio & Blangiardo’s

model (2010), only the home parameter accounts for home advantage, which is assumed

to be constant for all teams.

58

In addition, by looking at the plots in Figures 18 and 19, we can see that Chelsea have a

much lower defence parameter when playing away. Baio & Blangiardo’s model (2010) does

not allow for varying defensive performances by the team, since only θg1 is conditioned

on the home parameter, whereas θg2 does not. Therefore, Chelsea is assumed to have the

same defence parameter whether they are playing home or away, but from this model, we

infer that Chelsea generally has a better defence parameter when playing away from home.

One could also take the mean of the home and away effects of the attack and defence

parameters to obtain an ‘overall effect’ estimate for each team; see Figure 23 in the Ap-

pendix (Section I.4).

Note that while these plots are useful as a summary of the parameters for each team,

only the posterior means are plotted and they ignore the spread of the samples obtained

for each parameter. Therefore, strictly speaking, above we are only saying that Chelsea

has the highest posterior mean value for the home attacking parameter, not that they

definitely have be best home attacking parameter. The spread of the samples obtained

for the attack and defence parameters are displayed in Figure 16 and 17 and the table of

posterior summary statistics can be found in the Appendix in Section I.4.

Figure 18: A plot of the posterior means of the attack and defence parameters for each

team

59

Figure 19: A plot of the posterior means of the attack and defence parameters for each

team

60

7 Model assessments and comparisons

In Section 5, we presented a model developed by Baio & Blangiardo (2010) to model the

number of goals scored in a football match by each team and in Section 6, we proposed

a different Bayesian hierarchical model which used a Negative Binomial distribution to

model goals scored. We let ‘BB’ denote Baio & Blangiardo’s model and ‘NB’ to denote

the Negative Binomial model presented in Section 6. The aim of these models is to predict

future fixtures or a league table and so in this section, we use various methods to assess

the predictive power of the models, such as cross validation, the brier score and rank

probability score, which will all be explained in Sections 7.1 - 7.3 and we will discuss the

strengths and weaknesses of each probability score. In Sections 7.4 - 7.5, we look at two

more ways to assess the model by attempting to predict a league table from the models

and also by seeing how the model performs when using it as a basis of a betting model.

7.1 Cross-Validation

One method to assess the predictive power of a model is to fit the model to the whole

dataset and then to evaluate its performance on the same dataset. For the problem of

predicting football matches, this method would use the entire dataset of games to obtain

posterior samples for the parameters (i.e. the attack and defence parameters) and then

use these samples to simulate and predict the same games. However, as Arlot & Celisse

(2010, p.52) note, “training an algorithm and evaluating its statistical performance on

the same data yields an overoptimistic result”. In general, it is not good practice to use

the same data to obtain predictions and to test the model. Cross-Validation (CV) can

be used to help eliminate this problem. If there is enough data, it is better to split the

dataset into two sets - a training set and a test set. Next, we use the training set to build

the model and to obtain posterior samples of the parameters of interest and then use the

test set to assess our model and to validate predictions. By ‘validating a prediction’ we

mean that we assess how accurate the model was for the test set. For a predictive football

model, we might validate either how close it was to predict the number of goals scored by

each team or if it correctly predicted the outcome of the match - we will only assess the

model performance for outcome predictions (i.e. if the match ended in a home win, draw

or an away win).

From our predictive distribution, we can obtain probabilities for the outcomes of a match

- a home win, a draw or an away win. For the purposes of assessing our model, we use the

simple decision rule that we choose the outcome of the game with the highest estimated

probability. Of course, more complicated decision rules can be developed. For instance,

bettors may want to look for bets with good value, where the bookmaker’s odds are higher

than ours. So a bettor may compare the model probabilities and a bookmaker’s implied

probabilities (probabilities that are calculated using the bookmaker’s odds using the for-

61

mula p̃ = (1/decimal odds)) and having a decision rule to choose an outcome from that,

but for simplicity, we decide to choose the outcome with highest estimated probability.

Suppose there are N number of samples in the dataset, then there are several variants of

cross-validation (Arlot & Celisse, 2010), such as:

1. Leave-one-out Cross-Validation (LOOCV)

In LOOCV, each data point in the dataset is successively ‘left out’ from the sample

and is then used for validation.

2. Leave-p-out Cross-Validation (LPOCV)

In LPOCV, where 1 ≤ p ≤ N , every possible subset of p data is successively ‘left

out’ from the data the sample and is then used for validation.

Note that LPOCV with p = 1 is just LOOCV.

3. K-fold Cross-Validation

We first split the dataset into subsamples of size approximately equal to K
N

and then

each subsample successively plays the role of the validation sample (test set) and

the remaining data is the training set.

4. Monte Carlo Cross-Validation (MCCV)

In LOOCV and LPOCV, all of the data is used and so can become computationally

expensive if it requires a lot of computational power to build one model and the

number of samples in the dataset is large. A less computationally expensive CV

method is Monte Carlo Cross-Validation (MCCV) (Xu & Liang, 2000).

In MCCV, the dataset is randomly split into two parts, one is used as a training set

and the other as the test set to validate. This is then repeated m times, say, and

we take the average of the CV scores obtained.

Xu & Liang (2000, p.4) state by means of the MCCV method, the amount of computation

can be reduced substantially. For example, if we used this for a season that consists of

380 games in the Premier League, for LOOCV, we build the model 380 times, successively

taking a game out and predicting that game. However, with MCCV, we can choose to

do this a number of times and split the data randomly with 80% of the data being used

as the training set and 20% of the data being used as the test set, fitting the model with

the training set and then predicting the outcomes or score of the matches represented in

this testing set. The accuracy will vary each time due to the randomness in the train/test

dataset splitting so it is repeated several times. Then, we average the resulting accuracy

estimates to obtain a estimate of how good each model is.

The function to cross-validate a particular test set and training set for a model can be

found in the Appendix (Section J.1), named WLD validate (WLD standing for Win-Loss-

Draw). This uses a different function called predict game, which predicts a game using

62

one of the two models described in Sections 5 and 6. In WLD validate, we predict a

game in the test set and then choose the outcome with the highest probability. Next,

the function checks the actual outcome and records a TRUE value if the model correctly

guessed the outcome and a FALSE value otherwise. The function then returns a vector of

TRUE and FALSE values and we can calculate the percentage of TRUE values to find the

percentage of correct predictions.

A possible problem occurs when using MCCV to test these models, since our data includes

temporal information, as it includes the date of each game. This is important because a

team at a given time may be having a winning streak or losing streak, which can affect the

outcome of the game. Moreover, during a season other factors such as a managerial change

or an injury to a star player can have effects on a team’s performance and so by assessing

the predictive performance of a model using MCCV can cause bias. This problem is

sometimes referred to as look-ahead bias. Investopedia (2018) state that look-ahead bias

occurs by using information or data in a study or simulation which would not have been

known or available during the period being analysed. They note that this could lead to

inaccurate results. To make sure we avoid look-ahead bias when assessing the performance

of the model, we must only use information that would have been available at that time.

This also mimics how the model would have been used in a real world setting because

if we were to use such models for football predictions, then we could only ever use past

game data. Therefore, we will use a variant of cross-validation where we will progressively

extend the amount of data being fed into the model for the training set and will try to

predict the games in the season as if we were predicting the results of games on a week-by-

week basis. We call this variant of cross-validation as Sequential Cross-Validation (SCV),

since we are progressively extending the amount of data in the training set sequentially

through the dataset. With this type of cross validation, predictions should get better

as the rounds of games progress, since more data is available in the model. How this is

implemented is explained in Section 7.1.2.

7.1.1 MCCV Results

In MCCV, the dataset is randomly split into training and test sets to assess the model

and is repeated several times. This is done by using the MCCV function that can be

found in the Appendix (Section J.1). This function requires a test percentage, k say, to

be passed and then the dataset is split into a test and training set randomly, where k%

of the data is the test set and (100 − k)% of the data is the training set. The function

then uses WLD validate to find a cross validation score for this test set. We iterate this

process several times and then return the a set of MCCV scores. From this we can find

the mean of these scores. Additionally, we can find the standard deviation and standard

error of this estimate for the cross-validation score of the model.

63

For our tests for the models, we ran 50 iterations to obtain 50 MCCV scores where we

split the data randomly into an 80% training set and a 20% test set. Here the data

that we used is the 2016/17 Premier League season so the test set would always contain

(0.2× 380) = 76 games and there would be (0.8× 380) = 304 games in the training set.

The Monte Carlo cross-validation scores for each of the four models are summarised below

in Table 11.

Model MCCV Score (Mean average of scores) Standard Deviation Standard Error of Accuracy

BB 0.603 0.0478 0.007

NB 0.581 0.0604 0.009

Table 11: Monte Carlo Cross Validation (MCCV) Results

From the MCCV results, these suggest that the model presented by Baio & Blangiardo

(2010) is more accurate since it correctly guessed, on average, around 60% of games when

the data was randomly split into test sets (20% of the data) and training sets (80% of the

data), whereas the Negative Binomial correctly predicted the outcome of a match about

58% of the time on average. However, as noted before, we will also calculate a Sequential

Cross-Validation score to progressively extend the amount of data in the training set to

try predict future games to avoid look-ahead bias in the scoring rule.

7.1.2 SCV Results

To obtain a fairer assessment of the model, we limit ourselves to only use data that would

have been available at the day of each game. One possible way to do this is to use

LOOCV, but as stated before this is computationally expensive. Alternatively, we can

progressively extend the amount of data in the training set. The R code to calculate the

SCV score can be found in the Appendix (Section J.1), in the function called seqCV. The

trick used to avoid LOOCV is that in the Premier League and other leagues, the games

are generally played in rounds. The only problem is that sometimes teams do not play

in round and get games rescheduled due to other competition commitments. Hence, in

this function, it requires a minimum number of games, n, that will be in the training set

from the beginning. The data passed will then be split into a test and training set, where

the training set is the first n games of the dataset. If the total number of games is N ,

the remaining N − n games are the games to be predicted. To obtain a test set, we loop

through these remaining games and for each game we add the teams playing in a list. We

stop this loop if only one or no teams are added to the list, since there is a repeat of a

team and we then label these games as the test set. Next, the function fits a model with

the training set and see how the model predicts these games. The function then adds the

games into the training set and starts to predict the next round in the same way. This

loop carries on until all games in the season are in the training set, meaning that there

64

are no more games to be predicted. Put simply, the function progressively adds to the

training set to predict the next round of games. The sequential cross validation scores for

the three models of interest are summarised below in Table 12.

Model Sequential CV Score

BB 0.638

NB 0.651

Table 12: Sequential Cross Validation (SCV) Results

The data that is tested is always the last 370 games of the season, since we use the first

10 games as a training set to begin. Therefore, there is no need to repeat this process

and average scores as we did with MCCV. Therefore, from the results shown in Table 12,

then we can see that the Negative Binomial correctly predicted more outcomes than Baio

& Blangiardo’s model (2010). However, note that since there are only 370 games in the

overall test set, then the Negative Binomial distribution only got 5 more correct games

than Baio & Blangiardo’s model (2010).

7.2 Brier Score

Cross-validation provides a useful tool to assess how well a model predicts results, however,

it generally ignores the probabilities at which we make the predictions. Especially in the

case where our decision rule is to choose the outcome with the highest probability. To

illustrate why this is a problem, consider a Premier League match between Watford and

Swansea, then using the Negative Binomial model with the training set as the whole

2016/17 season, the predicted probabilities for a future game between these two teams is:

Pr(Watford Win) = 0.351

Pr(Draw) = 0.295,

Pr(Swansea Win) = 0.354.

In this case, we could predict a Swansea away win, but note that we are only 35.4%

certain that this is outcome occurs, which is pretty low - lower probability than guessing

head or tails when flipping a fair coin. In contrast, consider a game between two unevenly

matched opponents, where the model estimates a home win with 90% probability. The

problem using cross-validation above is that it does not take into account the probabilities

that we are predicting the outcome. Now suppose that we used cross-validation to assess

a game between Watford and Swansea and the result was a Watford win, we would just

get 0%. But this is the same score as getting the game wrong where we were 90% certain

of a home win, which is a worse since, the model was so convinced that the home team

would win.

65

Another problem is how the model distributes the probabilities of the unobserved events.

To illustrate this point, consider that we have two models, model A and model B. Then

Table 13 shows some predictions for hypothetical matches. From match 1, although both

models predict a home win with the same probability and is the most probable event for

both models, model A is preferred over model B because with model A, the distribution

for draw and away win is quite even, whereas model B places much higher probability of

an away win than a draw at 0.45, which is quite close to 0.5, the model’s estimate for a

home win. In game 2, since model A predicted a home win with a much higher probability

than model B, then model A is clearly better, this is similar to the situation described

above. In game 3, although both models had the same probability for a draw, which was

the observed outcome, model A is preferred since it had similar probability for a home or

away win, whereas model B predicted a home win at a much higher probability than a

draw.

Match Model Pr(Home win) Pr(Draw) Pr(Away win) Result Better model

1 A 0.5 0.3 0.2 Home win A

B 0.5 0.05 0.45

2 A 0.8 0.15 0.05 Home win A

B 0.4 0.3 0.2

3 A 0.375 0.3 0.325 Draw A

B 0.65 0.3 0.05

Table 13: Hypothetical probability estimates from two different models, A and B

An alternative verification score that accounts for the probability at which the model

predicts all events is the Brier score. The Brier score was proposed by Brier (1950) as

a means for verifying weather forecasts, but we will alter this to assess the predictive

capabilities of each football model that has been discussed so far.

Suppose that we have n observations where only one of r possible events can occur. For

each observation i, i = 1, ..., n, we have forecast probabilities (estimated probability for a

specific outcome) π̂i1, ..., π̂ir that the event r occurs, respectively. The r possible events

are chosen to be mutually exclusive and exhaustive so that

r∑
j=1

π̂ij = 1.

The Brier score for an individual forecast, j, for observation i is defined as

BSij = (Oij − π̂ij)2,

66

where Oij takes the value 1 if the forecast event occurred and 0 otherwise and π̂ij is the

probability of the forecast. Put simply, the Brier score for an individual forecast is defined

as

Brier score for individual forecast = (Actual result - Forecast Probability)2.

For the entire set of observations, the Brier score is defined as the sum over all the

individual Brier scores for each forecast and for each observation divided by the total

number of observations:

BS =
1

n

n∑
i=1

r∑
j=1

(Oij − π̂ij)2,

Note that a higher Brier score indicates a worse probability prediction scores, whereas a

lower Brier scores suggests a better predictive score.

Example: Brier score for predicting football match outcomes with 3 events

Consider the forecast probabilities for outcomes of football matches shown in Table 13,

then Table 14 shows how the Brier score can be calculated for each game for each model.

From this example, we can see that for each game, the Brier score is lower for model

A. Hence, the Brier score can recognise the problems that were discussed above since it

considers the probability of forecasts for unobserved events and so we can obtain a more

accurate score for model assessment.

Match Model Result Brier Score calculation for game Brier Score

1 A Home win (1− 0.5)2 + (0− 0.3)2 + (0− 0.2)2 0.38

B (1− 0.5)2 + (0− 0.05)2 + (0− 0.45)2 0.455

2 A Home win (1− 0.8)2 + (0− 0.15)2 + (0− 0.05)2 0.065

B (1− 0.4)2 + (0− 0.3)2 + (0− 0.2)2 0.49

3 A Draw (0− 0.375)2 + (1− 0.3)2 + (0− 0.325)2 0.73625

B (0− 0.65)2 + (1− 0.3)2 + (0− 0.05)2 0.915

Table 14: Example calculations of the Brier score for hypothetical probabilities given in

Table 13

By using the simple decision rule to pick the highest probable event and cross-validation

to assess the model, the models would be indistinguishable, since both models cor-

rectly predicted the first two games and got the third wrong, so would have obtained

a cross-validation score of 66.7%. In contrast, the Brier score for model A is given by

BSA = 1
3
(1.18125) = 0.39375 and the Brier score for model B is BSB = 1

3
(1.86) = 0.62,

and so model A is preferred under this scoring rule.

67

Further note that if a model just guessed the outcome of a match by assigning equal

probability to all outcomes, then the Brier score for this prediction, regardless of outcome,

is 0.667 (to 3dp), since if the outcome was a home win,

BS =
(

1− 1

3

)2

+
(

0− 1

3

)2

+
(

0− 1

3

)2

=
2

3
.

If the outcome was a draw or an away win, the first term in the sum is just swapped with

the second or third term. Therefore for a prediction that is better than purely guessing,

a Brier score of less than 2
3

is preferred.

To obtain a Brier score for each model, we calculate a Sequential Brier Score (SBS), which

again is the same as SCV, but we calculate the Brier score rather than the cross-validation

score where we validate the highest probable event prediction. Here, we will not calculate

a Monte Carlo Brier Score (MCBS), which is the same as MCCV, but instead we calculate

the Brier score for the test set in order to avoid look-ahead bias in our score. However,

the code to find a Monte Carlo Brier Score was written and can be found in the Appendix

(Section J.2) in the function called MCBrier.

7.2.1 Brier Score Results

The R code to obtain the Brier score for a match and a SBS score can be found in the

Appendix (Section J.2) in a function called seqBrier. This uses a similar algorithm to se-

qCV described in Section 7.1.2 and progressively increases the training set data and keeps

predicting the next round of games, only using the data that would have been available

at the time of the game. This function calls another function named calculate BS, which

calculates the Brier score for a set of games in a test set given a training set to build the

model. The sequential Brier scores for each of the models are summarised below in Table

15.

Model Sequential Brier Score

BB 0.5226

NB 0.5232

Table 15: Sequential Brier Results

Therefore, from just looking at the Brier scores, there does not seem to be much difference

between the two models, as they are equal up to 2 decimal places. Therefore, alternative

methods might need to be explored to compare these models.

68

7.3 Rank Probability Score

Although the Brier score offers a better scoring rule than cross-validation in the case of

assessing probabilistic football forecast models, it is not perfect. Constantinou & Fenton

(2012) discuss more cases where the Brier score does not return the ‘better’ model. For

example, consider the hypothetical scenarios shown in Table 16 and note that the Brier

score does not take into account the ordering when the probability of unobserved out-

comes are equal. In game number 4 in Table 16, both model A and B assign the same

probability to the correct outcome. They also assign the same probability values for un-

observed outcomes, but in a different order. But model A is more preferred since a draw

is closer to a home win than an away win is. However, a Brier score calculation for this

game would return the same value. Additionally, in match 5, although model B predicts

the correct outcome at a higher probability, model A is more indicative of a home win,

since there is only 5% of an away win, whereas model B suggests there is a 35% chance of

an away win. However, again a calculation of the Brier score for this game would suggest

model B is the preferred model. Constantinou & Fenton (2012) add to this and discuss

other scoring rules available that have been used in other literature around the topic of

assessing probabilistic football model, such as the rank probability score, which we will

use here.

Match Model Pr(Home win) Pr(Draw) Pr(Away win) Result Brier Score Better model

4 A 0.5 0.45 0.05 Home win 0.455 A

B 0.5 0.05 0.45 0.455

5 A 0.5 0.45 0.05 Home win 0.455 A

B 0.55 0.1 0.35 0.335

Table 16: Hypothetical probability estimates from two different models, A and B

Constantinou & Fenton (2012) state for for a single problem instance (i.e. a single match

in our case), then the rank probability score (RPS) is defined as

RPS =
1

r − 1

r∑
i=1

(i∑
j=1

π̂j −
i∑

j=1

Oj

)2

where r is the number of potential outcomes, π̂j is the probability of the forecast and Oj is

the observed outcome for the j-th possible event. Oj is defined as before where it takes the

value 1 if event j occurred and 0 otherwise. The RPS represents the difference between

the cumulative distributions of forecasts and the observations. By this definition, RPS

increases if the cumulative distribution of the forecast probabilities differs more from the

actual observed outcome and so a lower RPS indicates a better model. By using the RPS

score, we are able to ‘correctly’ identify model A as the preferred model for prediction in

each of the five matches given in Table 13 and Table 16.

69

Example

To illustrate how to calculate the rank probability score for the games shown in Table

16. In each game there are r = 3 possible outcomes: home win, draw and away win.

We present the cumulative distributions of the forecasts and the observed outcomes as a

vector in the columns below.

Match Model
∑i=1,2,3

j=1 π̂j
∑i=1,2,3

j=1 Oj RPS calculation RPS

4 A (0.5, 0.95, 1) (1,1,1) 1
2 [(0.5− 1)2 + (0.95− 1)2 + (1− 1)2] 0.12625

B (0.5, 0.55, 1) (1,1,1) 1
2 [(0.5− 1)2 + (0.55− 1)2 + (1− 1)2] 0.22625

5 A (0.5, 0.95, 1) (1,1,1) 1
2 [(0.5− 1)2 + (0.95− 1)2 + (1− 1)2] 0.12625

B (0.55, 0.65, 1) (1,1,1) 1
2 [(0.55− 1)2 + (0.65− 1)2 + (1− 1)2] 0.1625

Table 17: Example calculations of RPS for hypothetical probabilities given in Table 16

Note that since
∑3

j=1 π̂j and
∑3

j=1 Oj both equal 1, the RPS formula can also be written

as

RPS =
1

r − 1

r−1∑
i=1

(i∑
j=1

π̂j −
i∑

j=1

Oj

)2

Since a lower RPS is better, then we can see that RPS now chooses model A as the

superior model for prediction.

7.3.1 RPS Results

The function calculate RPS is written in R and can be found in the Appendix in Section

J.3. This function returns the total RPS for a set of games (the sum of the RPS scores for

each game). To find the mean RPS per game, we need to divide by the number of games

in the test set. To obtain a RPS score for each of the models we wish to assess, we use

the seqRPS function in the Appendix (Section J.3), which again uses the same algorithm

as seqCV and seqBrier to progressively increase the training set data to predict the next

round of games. The rank probability scores for each of the models for the last 370 games

of the season (first 10 games are used as the initial training set) are summarised below in

Table 18.

Model Total Sequential RPS Score Average Sequential RPS Score per game

BB 65.88 0.178

NB 64.05 0.173

Table 18: Sequential Rank Probability Score (RPS) Results

70

Again, similar to the Brier score results found in Section 7.2.1, the rank probability scores

for the two models are very close to each other, with the Negative Binomial model having

a slightly better score.

The difficulty of choosing the ‘best’ model using scoring rules is evident here since the

Brier score preferred Baio & Blangiardo’s model (2010), while the RPS preferred the Neg-

ative Binomial. It is important to note that we cannot definitively conclude which model

is superior and as Constantinou & Fenton (2012) note, in the absence of an agreed and

appropriate type of scoring rule for football models, it will always be difficult to reach a

consensus on whether a particular model is accurate or which of two or more competing

models is the ‘best’. However, the concern is that an inappropriate assessment of forecast

accuracy may lead to inconsistencies, whereby one rule may prefer one model and another

rule prefers an alternative model, as we have here.

Gneiting and Raftery (2007) note that in determining a good scoring rule for a particular

model, one should recognise that the underlying measurement scale type of the outcomes

for a specific problem should drive the type of scoring rule used. Constantinou & Fenton

(2012) use the example of assessing a model to predict a winning lottery number. They

note that although the possible outcomes appear to be an ordered set {1, 2, ..., 49}, the

relevant scale type is only nominal, meaning that if the winning number is 10, then a pre-

diction of 9 is no ‘closer’ than a prediction of 49, as they are both equally wrong and any

scoring rule should capture this. In contrast, in football, the set of outcomes {H, D, A}
must be considered on an ordinal scale, where H represents a home win, D a draw and

A an away win, since the outcome D is closer to a H than A is to H. Therefore, if the

result of the match is H, then the scoring rule should penalise the probability assigned

to A more than the probability assigned to D. The scenarios shown in Table 16 illustrate

these cases and the RPS satisfies all these scenarios by choosing the preferred model. In

contrast, the Brier score fails to recognise that football outcomes should be on an ordinal

scale and so its use to assess the forecast accuracy of football outcomes is inadequate, as

the Brier score fails to determine the more accurate forecasting model in the scenarios

presented in Table 16.

Therefore, it seems that the RPS is the more suitable scoring rule to assess models for the

prediction of football games compared to the Brier score. However, we are not suggesting

that the RPS is the only valid scoring rule for assessment, but we have shown several

scenarios where the RPS correctly chooses the more accurate model. It is also important

to note that such scoring rules only measure the forecast accuracy but does not measure

how useful the model is for other applications. Therefore, we look at two more methods

to assess the model by looking more closely at the applications of the models to specific

problems: using the model as a basis of a betting model and to predict a league table.

71

7.4 Using the models for a betting tool

One of the main applications of building a predictive model for football is to use it for

a betting model. We assess the usefulness of each model for betting by using the simple

decision rule to place a single on the most favoured outcome. In betting, a single is just a

bet that wins or loses depending on the outcome of one event. In contrast, an accumulator

is a bet that combines several selections and wins only if all the parts of the bet win. Here

we only use a very simple decision rule of betting on the outcome that has the highest

probability according to the model. The Football-Data website (2018) also gives the odds

offered by several bookmakers for each match, but here we will just use the odds offered

by Bet365. We again avoid using data that would not be available at the time of placing

the bet and use the 2016/17 Premier League season and try to predict the last 370 games

of this season.

Note that this is a very simple decision rule and in more complicated betting models, the

amount of money placed on each bet may vary depending on how certain the event will

happen. Further note that this report should not be used for betting purposes and this

part of this report is only to assess model performances of past data to give an indication

of how well the model will perform in the future, not to guarantee the same results.

7.4.1 Betting Assessment Results

The function calculate PL, which is written in R and can be found in the Appendix (Sec-

tion J.4), takes a training set and test set to build a model in Stan and for each game in the

test set, it will see if the model correctly guesses the outcome of the game. If a match is cor-

rectly guessed, then the profit from that match is equal to (wager×betting odds)−wager,

and if the model is incorrect then the profit from that match is just −wager, since the

bet is lost. Here, wager is just the amount of money placed on the bet, and the function

calculate PL requires a wager to be passed. This is repeated for all matches in the test

set and the profit for each game is returned in a vector. The function seqBetting (which

can be found in the Appendix, Section J.4) allows us to find the overall profit from this

decision rule for a given model. The overall profit return from this simple betting rule for

each model (if the wager for each game is £10) can be found below in Table 19.

Model Profit (in £s)

BB 909.80

NB 1031.60

Table 19: Profit from using the models for betting

72

We can see here that the Negative Binomial model outperforms Baio & Blangiardo’s

model (2010) significantly. Recall from 7.1.2, the Negative Binomial distribution cor-

rectly predicted 5 more games, hence this will contribute to the higher profit for the

Negative Binomial model. Also note that the two models do not always agree on the

most probable outcome. The breakdown of the profit/loss returned by the games for each

model is shown in a frequency table in Table 20 and so we can see that Baio & Blan-

giardo’s model would have correctly predicted more games that returned a profit greater

than £50, whereas the Negative Binomial model did not get predict the same outcome

for some of these games. However, the Negative Binomial model was more consistent

in correctly predicting games that returned less profit (between £0 to £10) and more in

between £20 and £30.

Profit/Loss (PL) Frequency

-10.00 (lost bet) 134

0 ≤ PL < 10 153

10 ≤ PL < 20 66

20 ≤ PL < 30 9

30 ≤ PL < 40 2

40 ≤ PL < 50 3

PL ≥ 50 3

(a) Baio & Blangiardo’s model (2010)

Profit/Loss Frequency

-10.00 (lost bet) 129

0 ≤ PL < 10 159

10 ≤ PL < 20 57

20 ≤ PL < 30 17

30 ≤ PL < 40 2

40 ≤ PL < 50 5

PL ≥ 50 1

(b) Negative Binomial model

Table 20: Frequency of each profit/loss for each model in £s

Further, Figure 20 shows the profit for each model over the course of the season.

Figure 20: Overall profit returns from each model in £s

73

Therefore, from this analysis it seems that the Negative Binomial may be more useful as a

basis of a betting model. Although we cannot guarantee that the model will perform like

this in the future, by back testing the model on past data, this gives us a good indication

of how they will perform for future games.

7.5 Using the models to predict a league table

Baio & Blangiardo (2010) used their model to predict the Serie A 1992-93 league table

as a means to assess their model. To do this, they used the model to obtain a posterior

sample for their model parameters and then used these to predict the same games in that

season to create a league table. Hence their model assessment method is very biased,

since they tested the model with the same dataset that was used to train the model.

Instead of using this method, we will use the same process as we did in calculating the

sequential probability scores and so we only predict games using data that was available

at the time. So far, we have only predicted the outcomes of games, but to predict a league

table, we will need to predict the scores for the games. To do this, the posterior mode

(or MAP estimate) of the number of goals scored is used to predict the number of goals

scored by each team.

The function get table can be found in the Appendix (Section J.5), which returns a league

table given a set of results. Recall that in the Premier League, the points system is as

follows: 3 points are awarded to the match winner, 1 point is awarded to both teams in

the event of a draw and 0 points are awarded to team if they lose. The observed table

from the 2016/17 Premier League season can be found in Section K in the Appendix.

In addition, a function called track points progress can be found in Section J.5 in the

Appendix, which returns a matrix showing the cumulative points gained for each team

given a set of results.

7.5.1 Predicting League Table Results

To assess model performance in predicting a league table, the function predict table returns

both a predicted league table and a matrix showing the predicted cumulative points from

a model by using get table and track points progress after predicting all the seasons games.

This function progressively predicts each game in the league after a minimum number of

games, which is passed in this function. Rather than choosing the highest probable event,

since a league table also records the goal difference for each team, the posterior mode of

goals scored by each team is used to obtain a predicted score line. After obtaining a set of

results, the function calls get table and track points progress to obtain a predicted league

table for the model and a find each teams points progression through out the season.

74

The predicted league tables from each of these models can be found in the Appendix

(Section K). In Figure 21, we plot the observed cumulative points through the season for

each team in black, the predicted results from Baio & Blangiardo’s model (2010) in red

and the blue lines represent the predictions from the Negative Binomial model.

Therefore, rather than using the whole dataset to obtain posterior samples for our model

parameters and then use these to predict games, this method to assess model performance

only uses data that would have been available at the time for each game. As a result,

this give a fairer assessment of the models than Baio & Blangiardo’s method (2010) does,

where data is used twice to fit and test the model.

For some teams (Hull City, Leicester, Manchester City, Stoke, Watford, West Brom), we

can see that the Negative Binomial distribution seems to perform better than Baio &

Blangiardo’s model (2010), since the blue line offers a closer fit to the black line. How-

ever, there are some notable teams where the Negative Binomial performed particularly

poor in, for example, Middlesbrough, Swansea and West Ham. Despite these particular

teams, the Negative Binomial generally performed well to predict a teams cumulative

points over the season and therefore to predict a league table. Further, by looking at

the predicted league tables in Section K in the Appendix, we can see that the Negative

Binomial model correctly predicted 8 team final league positions (the top 7 positions and

15th place), whereas Baio & Blangiardo’s model (2010) only got 3 final league positions

correct. Hence, by using the posterior mode to predict scores, the Negative Binomial

generally outperformed the Poisson model by Baio & Blangiardo (2010).

Note that we are predicting each game week by week until the end. In practice, we may

predict a league table from these models half way through the season to simulate the rest

of the remaining games. In this case, we keep adding our predicted scores to the training

set progressively, rather than the observed games, since they would be unknown at that

time. We also do this so that the team parameters do not remain static for the remainder

of the season but instead they rise or fall based on the simulated matches that are played.

However, this could be computationally heavy, since it would be necessary to repeat these

simulations to obtain an average. In doing this method, we would obtain several predicted

league tables, which we could then estimate the probabilities that a team would finish

above a certain position by counting the number of tables where they finished above this

position. In practice, one may want to do this to find the probability of survival in the

league (not relegating) or to finish in top 4 to obtain a Champions League spot. We could

also estimate probabilities of finishing in a specific position in the league by counting

the number of times the team finished there in the simulated league tables. This could

be a variation on this method to assess model performance, but here we only focus on

predicting the scores of the games progressively through the season.

75

(a) Arsenal (b) Bournemouth

(c) Burnley (d) Chelsea

(e) Crystal Palace (f) Everton

(g) Hull City (h) Leicester

76

(i) Liverpool (j) Manchester City

(k) Manchester United (l) Middlesbrough

(m) Southampton (n) Stoke City

(o) Sunderland (p) Swansea City

77

(q) Tottenham Hotspurs (r) Watford

(s) West Bromwich Albion (t) West Ham United

Figure 21: Predictive validation of the Negative Binomial model in comparison with Baio

& Blangiardo’s model (2010)

78

8 Conclusion

In this report, a Bayesian hierarchical model has been developed and analysed to deter-

mine if the model predicts future football matches well. We have implemented a model

discussed by Baio & Blangiardo (2010) and developed an alternative model with different

parameters and one that uses the Negative Binomial distribution to model the number

of goals scored by each side. In relevant literature, the use of the Negative Binomial dis-

tribution to model goals has been largely ignored and a Poisson distribution is generally

assumed. While we found that the Poisson distribution was a reasonable fit to the data,

improvements could be made. In Section 7, we discussed several different methods to

analyse predictive performance such as cross validation, the Brier score, rank probability

score (RPS) and also in predicting a league table and assessing its use in a betting model.

While the assessment methods for predicting a league table and its use in a betting are

specific to football models, cross-validation, Brier score and RPS can all be applied in

any probabilistic model. The Brier score is more useful in cases where we are interested

in the probability at which we make our predictions, and RPS takes this further and is

important in situations where there is a ranked outcome, as there is with football. From

our results in Sections 7.1 - 7.3, the scores for the two models discussed were very close,

but when applying the models as a betting tool and to predict a league table, the Negative

Binomial model outperformed Baio & Blangiardo’s model (2010).

Therefore, to conclude, the Negative Binomial Bayesian hierarchical model developed

throughout this report performs well in predicting football matches and can also be used

to obtain estimates to attack and defence parameters that can be used to understand

how each team plays. In this report, we focused on using this model to predict English

Premier League games, so to further assess this model, one can try to apply this model to

other countries and leagues to see if a Negative Binomial distribution can provide a good

fit to goals data in competitions outside the Premier League.

Further, note that the model only uses goals to obtain estimates for parameters for each

team and goals may not be the best indicator for how well a team may perform. For

instance, a team may have a run of games where they should have scored more but were

unlucky and so would have a low attack parameter from those games, but in reality, they

played very well. Therefore, since goals may not necessarily be the best indicator of team

performance, one may look for more data to help add information on underlying team

strengths and to better predict the future performances for each team. For example, foot-

ball data experts Opta calculate expected goals (or xG), which is a metric which assess

every chance a team has and is a way of assigning a quality value to every attempt at

goal (Opta, 2017).

79

There are many different expected goals models, but Opta have analysed over 300,000

shots to calculate the chance of an attempt being scored in a specific position on the

picture during a particular phase of play (Stanton, 2017). It is based on several variables

such as the assist type, shot angle, distance from goal and several others. Summing up

the total xG for a team for a game gives the expected goals they should have scored in

that game. For very good teams, they will usually score more than the average team will

and for poorer teams, they may score lower than their expected goals. We can interpret

this statistic as how many goals an average team would have scored given the chances

created. It can also help us determine the quality of chances a team produces to give us a

better indication of how well a team plays in general. If a team is consistently creating a

lot of very good chances but not scoring, we may be missing the fact that they are playing

very well but just not scoring them. Therefore, a possible extension of this model is to

incorporate more data that can help obtain more accurate estimates to team performance

levels.

Moreover, the model currently ignores possible factors that can have an effect on a team’s

performance or chances of winning, such as injuries (or resting) of star players during

the season, the effect of fatigue, managerial changes, distance travelled by away team

and the form of the teams. Therefore, another possible extension of this model is to add

these factors to the model. For instance, Joseph et al. (2006) constructed a Bayesian

Network to predict the outcome of football matches only including Tottenham Hotspurs,

which included features such as the presence or absence of particular key players. Hence,

although the Negative Binomial model performed well in our assessments, there is a lot of

room for improvement, which may possibly be achieved by developing the model further

to account for psychological factors and particularly to factors concerning the form, the

fitness of teams and the presence or absence of particular players. It is important to note

when adding these to the model, we must also determine whether they have a significant

effect on team performances and their chances of winning a football match.

Therefore, the next steps for this project would be to try add more factors and parameters

to the model with the aim to better represent the dynamics that contribute to teams

winning football matches. However, the Negative Binomial model proposed here offers a

good model performance with simple data that is readily accessible.

80

References

Anderson, C. & Sally, D. 2014. The Numbers Game. London: Penguin Group.

Arlot, S. & Celisse, A. 2010. A survey of cross-validation procedures for model selection.

Statistics Surveys. 4, pp. 40-79.

Baio, G. & Blangiardo, M. 2010. Bayesian hierarchical model for the prediction of football

results. Journal of Applied Statistics. 37(2), pp. 253-264.

Barp, A., Briol, F.X., Kennedy, A.D. & Girolami, M. 2017. [Pre-print]. Geometry &

Dynamics for Markov Chain Monte Carlo. arXiv. [Online]. [Accessed 11 April 2018].

Available from:

https://arxiv.org/abs/1705.02891

Ben-Naim, E., Vazquez, F. & Redner, S. 2005. [Pre-print]. What is the most competitive

sport?. arXiv. [Online]. [Accessed 25 January 2018]. Available from:

https://arxiv.org/abs/physics/0512143

Betancourt, M.J. 2017. [Pre-print]. A Conceptual Introduction to Hamiltonian Monte

Carlo. arXiv. [Online]. [Accessed 2 April 2018]. Available from:

https://arxiv.org/abs/1701.02434

Betancourt, M.J., Byrne, S., Livingstone, S. & Girolami, M. 2014. [Pre-print]. The

Geometric Foundations of Hamiltonian Monte Carlo. arXiv. [Online]. [Accessed 2 April

2018]. Available from:

https://arxiv.org/abs/1410.5110

Betancourt, M.J. & Girolami, M. 2013. [Pre-print]. Hamiltonian Monte Carlo for Hier-

archical Models. arXiv. [Online]. [Accessed 17 February 2018]. Available from:

https://arxiv.org/abs/1312.0906

Betancourt, M.J. & Stein, L.C. 2011. [Pre-print]. The Geometry of Hamiltonian Monte

Carlo. arXiv. [Online]. [Accessed 22 February 2018]. Available from:

https://arxiv.org/abs/1112.4118

Bolstad, W.B. 2007. Introduction to Bayesian Statistics. 2nd ed. New Jersey: John Wiley

& Sons.

Box, G. E. P. 1976. Science and Statistics. Journal of the American Statistical Associa-

tion. 71(356), pp. 791-799.

Box, G. E. P. & Tiao, G. C. 1973. Bayesian Inference in Statistical Analysis. Boston:

Addison-Wesley Pub. Co.

Brier, G.W. 1950. Verification of forecasts expressed in terms of probability. Monthly

Weather Review. 78(1), pp. 1-3.

81

Chatfield, C. & Collins, A.J. 1980. Introduction to Multivariate Analysis. 1st ed. Florida:

Chapman & Hall.

Constantinou, A. & Fenton, N.E. 2012. Solving the problem of inadequate scoring rules

for assessing probabilistic football forecasting models. Journal of the Royal Statistics

Society. Series C: Applied Statistics.

Cook, I. & Upton, G. 2014. A Dictionary of Statistics. 3rd ed. Oxford: Oxford University

Press.

Dahiru, T.P. 2008. p-value, a true test of statistical significance? A cautionary note.

Annals of Ibadan Postgraduate Medicine. 6(1), pp. 21-26.

Davis, P.J. & Rabinowitz, P. 2007. Methods of Numerical Integration. New York: Dover

Publications.

Deloitte. 2017. Annual Review of Football Finance. [Online]. [Accessed 22 November

2017]. Available from:

https://www2.deloitte.com/uk/en/pages/sports-business-group/articles/annual-

review-of-football-finance.html

Diestel, R., 2006. Graph Theory. 3rd ed. Berlin: Springer Science & Business Media.

Dixon, M. & Coles, S. 1997. Modelling Association Football Scores and Inefficiencies in

the Football Betting Market. Journal of the Royal Statistical Society. 46(2), pp. 265-280.

Economist. 2011. Ranking sports’ popularity. [Online]. [Accessed 24 March 2018]. Avail-

able from:

https://www.economist.com/blogs/gametheory/2011/09/ranking-sports%E2%80%99

-popularity

Fishman, G.S. 1996. Monte Carlo: Concepts, Algorithms and Applications. New York:

Springer-Verlag.

Football Data. 2017. Football Data Website. [Online]. [Accessed 04 September 2018].

Available from:

http://www.football-data.co.uk/

Gabry, J., Stan Development Team, Andreae, M., Betancourt, M., Carpenter, B., Gao,

Y., Gelman, A., Goodrich, B., Lee, D., Song, D. & Trangucci, R. 2017. Shinystan: In-

teractive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models.

[Online]. [Accessed 19 November 2017]. Available from:

https://cran.r-project.org/web/packages/shinystan/index.html

Gelman, A., Carlin, J.B., Hal, S.S., David, B.D., Aki, V., and Donald, B.R. 2014.

Bayesian Data Analysis. 3rd ed. Florida: Taylor & Francis Group.

82

Gelman, A & Hoffman, M.D. 2011. [Pre-print]. The No-U-Turn-Sampler: Adaptively

Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Re-

search. [Online]. [Accessed 22 February 2018]. Available from:

https://arxiv.org/abs/1111.4246

Geyer, C.J. 1992. Practical Markov Chain Monte Carlo. Statistical Science. 7(4), pp.

473-483.

Geyer, C.J. 2011. Introduction to Markov Chain Monte Carlo. In: Brooks, S., Gelman,

A., Jones, G.L., Meng, X.L. ed(s). Handbook of Markov Chain Monte Carlo. Florida:

Taylor & Francis Group, pp. 3-47.

Gill, J. 2014. Bayesian Methods: A social and Behavioural Science Approach. 3rd ed.

Florida: Taylor & Francis Group.

Gneiting, T. & Raftery, A. 2007. Strictly Proper Scoring Rules, Prediction, and Estima-

tion. Journal of the American Statistical Association. 102(477), pp. 359-378.

Goodman, S.N. 1999. Toward evidence-based medical statistics. 2: The Bayes Factor.

Annals of Internal Medicine. 130(12), pp. 1005-1013.

Hall, D.B. 2000. Zero-Inflated Poisson and Binomial Regression with Random Effects:

A Case Study. Biometrics. 56, pp. 1030-1039.

Hartigan, J.A. 1983. Asymptotic Normality of Posterior Distributions. In: Bayes Theory.

New York: Springer.

Hastings, W.K. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their

Applications. Biometrika. 57(1), pp. 97-109.

Howie, D. 2002. Interpreting probability. Controversies and development in the early

twentieth century. Cambridge: Cambridge University Press.

Hughes, G. & Topp, C.F.E. 2015. Probabilistic Forecasts: Scoring Rules and Their

Decomposition and Diagrammatic Representation via Bregman Divergences. Entropy.

17, pp. 5450-5471.

Investopedia. 2018. Look-Ahead Bias. [Online]. [Accessed 29th March 2018]. Available

from:

https://www.investopedia.com/terms/l/lookaheadbias.asp

Joseph, A., Fenton, N.E. & Neil, M. 2006. Predicting football results using Bayesian nets

and other machine learning techniques. Knowledge-Based Systems. 19(7), pp. 544-553.

Karlis, D. & Ntzoufras, I. 2000. On modelling soccer data. Student. 3(4), pp. 229-244.

83

Karlis, D. & Ntzoufras, I. 2003. Analysis of sports data using bivariate Poisson models.

Journal of the Royal Statistical Society. 52(3), pp. 381-393.

Lee, A. 1997. Modelling Scores in the Premier League: Is Manchester United Really the

Best?. Chance. 10(1), pp. 15-19.

Lee, P.M. 2004. Bayesian Statistics: An Introduction. 3rd ed. London: John Wiley &

Sons.

Lewis, M. 2003. Moneyball: The Art of Winning an Unfair Game. New York: W. W.

Norton & Company.

Lin, M., Lucas Jr., H.C. & Shmueli, G. 2013. Too Big to Fail: Large Samples and the

p-value Problem. Informations Systems Research. 24(4), pp. 906-917.

Maher, M. 1982. Modelling association football scores. Statistica Neerlandica. 36. pp.

109-118.

McCullagh, P. 2002. What is a Statistical Model?. The Annals of Statistics. 30(5), pp.

1225-1267.

McLachlan, G. & Peel, D. 2004. Finite Mixture Models. New York: John Wiley & Sons.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953.

Equation of state calculation by fast computing machines. J. Chem Phys. 21(1087), pp.

1087-1092.

Miller, T. 2015. Sports Analytics and Data Science. New Jersey: Pearson Education, Inc.

Morris, D.E., Oakley, J.E. & Crowe, J.A. 2014. [Online]. A web-based tool for eliciting

probability distributions from experts. Environmental Modelling & Software. 52, pp. 1-4.

Available from:

http://dx.doi.org/10.1016/j.envsoft.2013.10.010.

Murray, I. 2007. Advances in Markov chain Monte Carlo methods. Ph.D. thesis, Univer-

sity College London.

Neal, R. 2011. MCMC using Hamiltonian dynamics. In: Brooks, S., Gelman, A., Jones,

G.L., Meng, X.L. ed(s). Handbook of Markov Chain Monte Carlo. Florida: Taylor &

Francis Group, pp. 113-160.

Opta. 2017. Opta’s event definitions. [Online]. [Accessed 23 April 2018]. Available from:

https://www.optasports.com/news/optas-event-definitions/

Papadakis, M., Tsagris, M., Dimitriadis, M., Fafalios, S., Tsamardinos, I., Fasiolo, M.,

Borboudakis, G., Burkardt, J., Zou, C. & Lakiotaki, K. Rfast Package Documentation.

[Online]. [Accessed 6 October 2017]. Available from:

84

https://cran.r-project.org/web/packages/Rfast/Rfast.pdf

Pearl, J. 2009. Causality: models, reasoning, and inference. 2nd ed. New York: Cam-

bridge University Press.

Pearl, J. 1985. Bayesian networks: A model of self-activated memory for evidential

reasoning. In Proceedings, Cognitive Science Society. University of California, Irvine,

pp. 329-334.

Pearl, J., Geiger, D. & Verma, T. 1989. Conditional independence and its representations.

Kybernetika. 25(7), pp. 33-44.

Perkins, J. & Wang, D. 2004. A Comparison Of Bayesian And Frequentist Statistics As

Applied In A Simple Repeated Measures Example. Journal of Modern Applied Statistical

Methods. 3(1), pp. 227-233.

Reep, C. & Benjamin, B. 1968. Skill and Chance in Association Football. Journal of the

Royal Statistical Society A. 131(4), pp. 623-629.

The R Core Team. 2017. A Language and Environment for Statistical Computing. [On-

line]. [Accessed 2 October 2017]. Available from:

https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf

Rasmussen, C.E. & Ghahramani, Z. 2002. Bayesian Monte Carlo. Proceedings of the 15th

International Conference on Neural Information Processing Systems, pp. 505-512.

Ravenzwaaij, D.V., Cassey, P. & Brown, S.D. 2018. A simple introduction to Markov

Chain Monte-Carlo sampling. Psychonomic Bulletin & Review. 25(1), pp. 143-154.

Rice, J.R. 1995. Mathematical Statistics and Data Analysis. 2nd ed. California:

Wadsworth Publishing Company.

Robert, C.P. 2010. [Pre-print]. Bayesian computational methods. arXiv. [Online]. [Ac-

cessed 22 February 2018]. Available from:

https://arxiv.org/abs/1002.2702

Robert, C.P. & Casella, G. 2004. Monte Carlo Statistical Methods. 2nd ed. New York:

Springer.

Roberts, G.O. 1996. Markov chain concepts related to sampling algorithms. In: Gilks,

W.R. Gilks, Richardson, S. & D.J. Spiegelhalter. ed(s). Markov chain Monte Carlo in

practice. London: Chapman & Hall, pp. 45-54.

Stan Development Team. 2018. RStan: the R interface to Stan. [Online]. [Accessed 04

January 2018]. Available from:

https://cran.r-project.org/web/packages/rstan/index.html

85

Stan Development Team. 2017. Users Guide and Reference Manual. [Online]. [Accessed

15 October 2017]. Available from:

http://mc-stan.org/users/documentation/

Stanton, J. 2017. Premier League: ‘Expected goals’ tells us whether a player really should

have scored. [Online]. [Accessed 23 April 2018]. Available from:

https://www.bbc.co.uk/sport/football/40699431

Voss, J. 2014. An Introduction to Statistical Computing - A Simulation-based Approach.

1st ed. West Sussex: John Wiley & Sons.

Walker, A.M. 1969. On the Asymptotic Behaviour of Posterior Distributions. Journal of

the Royal Statistics Society. Series B. 31(1), pp. 80-88.

Weinzierl, S. 2000. Introduction to Monte Carlo Methods. arXiv. [Online]. [Accessed 7

March 2018]. Available from:

https://arxiv.org/abs/hep-ph/0006269

Xu, Q.S. & Liang, Y.Z. 2000. Monte Carlo cross validation. Chemometrics and Intelligent

Laboratory Systems. 56(1), pp. 1-11.

86

A Example of Rejection Sampling

1 ### Plotting densities

2 curve(dbeta(x, 4, 2), 0, 1, col = "red", ylab=expression(paste(pi(theta)

)), xlab=expression(theta), main=expression(paste(’Plot of Beta (4,2)

density and Uniform (0,1) density ’)), lwd =2.5)

3 curve(dunif(x, 0, 1), 0, 1, add=T, col = "blue", lwd =2.5)

4 legend("topleft",legend=c(’Beta (4,2)’, ’Uniform (0,1)’), lty=c(1,1), lwd=

c(2.5 ,2.5),col=c(’blue’,’red’))

5

6 ### Rejection Sampling

7 i=1

8 N=10000

9 iterations =0

10 theta=NULL

11 while (i<N) {

12 iterations=iterations +1

13 # sample theta from a uniform distribution

14 sample = runif (1,0,1)

15 # evaluate the probabiltiy of beta (4,2) at sampled value

16 target = dbeta(sample , 4, 2)

17 # seeing if we want to keep this value or not

18 if (runif (1,0,1) < target/3) {

19 theta[i] = sample

20 i=i+1

21 }

22 }

23 paste(’Acceptance rate: ’, N/iterations)

24 hist(theta , freq = F, col = "grey", breaks = 100, ylab=expression(paste(

pi(theta))), xlab=expression(theta), main=expression(paste(’Histogram

of accepted values of ’, theta , ’ and Beta (4,2) density ’)))

25 curve(dbeta(x, 4, 2), 0, 1, add =T, col = "red")

B Example of Metropolis-Hastings Algorithm

1 ### Using the Gamma (4,2) Proposal

2 N = 10000;

3 lpost = NULL

4 lpost [1] = 10

5 for (i in 2:N){

6 # we use a Gamma (4,2) proposal distribution

7 lstar = rgamma (1,4,2)

8 # we evaluate the log posterior density for the proposed value

9 ratiotop = 19*log(lstar) - 7*lstar

10 # we evaluate the log posterior density for the previous value

11 ratiobot = 19*log(lpost[i-1]) - 7*lpost[i-1]

12 # we evaluate the log proposal density for the previous value

13 qtop = log(dgamma(lpost[i-1],4,2))

87

14 # we evaluate the log proposal density for the proposed value

15 qbot = log(dgamma(lstar ,4,2))

16

17 # Here , we used the log densities to avoid computational overflows or

underflows to avoid exponents

18 # If we were to use the regular densities , the variables set would

have been:

19 #ratiotop = (lstar ^(19))*exp(-7*(lstar))

20 #ratiobot = (lpost[i -1]^(19))*exp(-7*(lpost[i-1]))

21 #qtop = dgamma(lpost[i-1],4,2)

22 #qbot = dgamma(lstar ,4,2)

23

24 # now , we decide if we keep it or not

25 U = runif (1,0,1)

26 if (log(U) <((ratiotop + qtop)-(ratiobot + qbot))){

27 lpost[i] = lstar

28 } else { lpost[i] = lpost[i-1] }

29 }

30 plot(lpost , type=’l’, xlab="t", ylab=expression(lambda), main=expression

(paste(’MCMC Trace Plot for ’, lambda)))

31 mean(lpost [1000:N])

32 median(lpost [1000:N])

33

34 ### Using the Folded Normal Proposal

35 N = 10000

36 lpost = NULL

37 lpost [1] = 10

38 sigma2 = 10

39 for (i in 2:N){

40 # we use a folded normal distribution for the proposal distribution

41 lstar = abs(rnorm(1,lpost[i-1],sqrt(sigma2)))

42 # we evaluate the log posterior density for the proposed value

43 ratiotop = 19*log(lstar) - 7*lstar

44 # we evaluate the log posterior density for the previous value

45 ratiobot = 19*log(lpost[i-1]) - 7*lpost[i-1]

46 # we evaluate the log proposal density for the previous value

47 qtop = log(abs(dnorm(lpost[i-1], lpost[i-1],sqrt(sigma2))))

48 # we evaluate the log proposal density for the proposed value

49 qbot = log(abs(dnorm(lstar ,lpost[i-1],sqrt(sigma2))))

50

51 # now , we decide if we keep it or not

52 U = runif (1,0,1)

53 if (log(U) <((ratiotop + qtop)-(ratiobot + qbot))){

54 lpost[i] = lstar

55 } else { lpost[i] = lpost[i-1] }

56 }

57 plot(lpost , type=’l’, xlab="t", ylab=expression(lambda), main=expression

(paste(’MCMC Trace Plot for ’, lambda)))

88

58 mean(lpost [1000:N])

59 median(lpost [1000:N])

C Example of Hamiltonian Monte Carlo Algorithm

1 # Example for 10000 samples and different number of leapfrog steps (Just

change the value of L)

2

3 N = 10000;

4 lpost = NULL

5 lpost [1] = 10

6 for (i in 2:N){

7 # first we sample a new momentum variable , which has normal(0, sigma2)

distribution

8 sigma2 = 100

9 phi = rnorm(1, 0, sqrt(sigma2))

10 # we need to keep a variable that is phi before to use in the

acceptance ratio

11 phi_before = phi

12 # we need to have a variable lambda to update in the leapfrog steps

13 lambda = lpost[i-1]

14 # in order to update the values , we need to set the size epsilon and

number of leapfrog steps L

15 epsilon = 0.5

16 L = 100

17 for (j in 1:L) {

18 phi = phi + 0.5*epsilon*((19/lambda) - 7)

19 lambda = lambda + (epsilon/sigma2)*phi

20 phi = phi + 0.5*epsilon*((19/lambda) - 7)

21 }

22 # now lambda = lambda* and phi = phi*

23 # we evaluate the log posterior density for the proposed value for

lambda

24 ratiotop = 19*log(lambda) - 7*lambda

25 # we evaluate the log posterior density for the previous value for

lambda

26 ratiobot = 19*log(lpost[i-1]) - 7*lpost[i-1]

27 # we evaluate the log proposal density for the previous value for phi

28 phitop = log(dnorm(phi , 0, sqrt(sigma2)))

29 # we evaluate the log proposal density for the proposed value for phi

30 phibot = log(dnorm(phi_before , 0, sqrt(sigma2)))

31

32 # now , we decide if we keep it or not

33 U = runif (1,0,1)

34 if (log(U) <((ratiotop + phitop)-(ratiobot + phibot))){

35 lpost[i] = lambda

36 } else { lpost[i] = lpost[i-1] }

37 }

89

38 plot(lpost , type=’l’, xlab="t", ylab=expression(lambda), main=expression

(paste(’MCMC Trace Plot for ’, lambda)))

39 mean(lpost [1000:N])

40 median(lpost [1000:N])

41

42 ### Example for one update - no need to do any loops

43

44 lpost = NULL

45 lpost [1] = 10

46 sigma2 = 100

47 phi = rnorm(1, 0, sqrt(sigma2))

48 # we need to keep a variable that is phi before to use in the acceptance

ratio

49 phi_before = phi

50 # we need to have a variable lambda to update in the leapfrog steps

51 lambda = lpost[i-1]

52 # in order to update the values , we need to set the size epsilon and

number of leapfrog steps L

53 epsilon = 0.5

54 # performing one leapfrog step

55 phi = phi + 0.5*epsilon*((19/lambda) - 7)

56 p = c(phi_before , phi) # keeping track of phi

57 lambda = lambda + (epsilon/sigma2)*phi

58 phi = phi + 0.5*epsilon*((19/lambda) - 7)

59 p = c(p, phi)# keeping track of phi

60 l=c(lpost[i-1], lambda) # keeping track of lambda

61 # now lambda = lambda* and phi = phi*

62 # we evaluate the log posterior density for the proposed value for

lambda

63 ratiotop = 19*log(lambda) - 7*lambda

64 # we evaluate the log posterior density for the previous value for

lambda

65 ratiobot = 19*log(lpost[i-1]) - 7*lpost[i-1]

66 # we evaluate the log proposal density for the previous value for phi

67 phitop = log(dnorm(phi , 0, sqrt(sigma2)))

68 # we evaluate the log proposal density for the proposed value for phi

69 phibot = log(dnorm(phi_before , 0, sqrt(sigma2)))

70 # now , we decide if we keep it or not

71 U = runif (1,0,1)

72 if (log(U) <((ratiotop + phitop)-(ratiobot + phibot))){

73 lpost[i] = lambda

74 } else { lpost[i] = lpost[i-1] }

75

76 # plotting the proposed values for lambda an phi from the leapfrog steps

77 plot(x=c(0,1), l, xlab="t", ylab=expression(lambda), main=expression(

paste(’MCMC Trace Plot for ’, lambda)), pch =16)

78 lines(x=c(0,1), l)

79 plot(x=c(0 ,0.5 ,1), p, xlab="t", ylab=expression(phi), main=expression(

90

paste(’MCMC Trace Plot for ’, phi)), pch =16)

80 lines(x=c(0 ,0.5,1), p)

81

82 # printing log(A) and log(U)

83 print (((ratiotop + phitop) -(ratiobot + phibot)))

84 print(log(U))

D Assessing distribution fits to goals data (Poisson,

ZIP, NB)

1 options("scipen"=100)

2 require(dplyr)

3 E0_2017 = read.csv("E0_2017. csv")

4 E0_2016 = read.csv("E0_2016. csv")

5 E0_2015 = read.csv("E0_2015. csv")

6 E0_2014 = read.csv("E0_2014. csv")

7 E0_2013 = read.csv("E0_2013. csv")

8 E0_2012 = read.csv("E0_2012. csv")

9 E0_2011 = read.csv("E0_2011. csv")

10 E0_2010 = read.csv("E0_2010. csv")

11 E0_2009 = read.csv("E0_2009. csv")

12 E0_2008 = read.csv("E0_2008. csv")

13 E0_2007 = read.csv("E0_2007. csv")

14 E0_2006 = read.csv("E0_2006. csv")

15

16 E0_2016 = E0_2016[rev(rownames(E0_2016)) ,][2:6]

17 E0_2015 = E0_2015[rev(rownames(E0_2015)) ,][2:6]

18 E0_2014 = E0_2014[rev(rownames(E0_2014)) ,][2:6]

19 E0_2013 = E0_2013[rev(rownames(E0_2013)) ,][2:6]

20 E0_2012 = E0_2012[rev(rownames(E0_2012)) ,][2:6]

21 E0_2011 = E0_2011[rev(rownames(E0_2011)) ,][2:6]

22 E0_2010 = E0_2010[rev(rownames(E0_2010)) ,][2:6]

23 E0_2009 = E0_2009[rev(rownames(E0_2009)) ,][2:6]

24 E0_2008 = E0_2008[rev(rownames(E0_2008)) ,][2:6]

25 E0_2007 = E0_2007[rev(rownames(E0_2007)) ,][2:6]

26 E0_2006 = E0_2006[rev(rownames(E0_2006)) ,][2:6]

27 pl.data = rbind(E0_2016, E0_2015, E0_2014, E0_2013, E0_2012, E0_2011, E0

_2010, E0_2009, E0_2008, E0_2007)

28

29 H=0; D=0; A=0

30 for (game in 1:nrow(pl.data)){

31 if (pl.data[game ,]$FTHG > pl.data[game ,]$FTAG) {

32 H = H + 1

33 } else if (pl.data[game ,]$FTHG == pl.data[game ,]$FTAG) {

34 D = D + 1

35 } else if (pl.data[game ,]$FTHG < pl.data[game ,]$FTAG) {

36 A = A + 1

91

37 }

38 }

39 x = c(H,D,A); labels = c(’Home Win’, ’Draw’, ’Away Win’)

40 percent = round (100*x/sum(x), 2)

41 pie(x, labels = percent , main=’Aggregate Outcome Percentages ’, col = c(’

dodgerblue ’, ’darkolivegreen3 ’, ’firebrick ’))

42 legend(’topright ’, labels , cex = 0.8, fill = c(’dodgerblue ’, ’

darkolivegreen3 ’, ’firebrick ’))

43

44 assess_fit = function(expected , observed , data) {

45 expected = expected/sum(expected) #making the probabilities sum to 1

46 variance = c()

47 for (i in 1: length(observed)) {

48 variance[i] = ((observed[i]/nrow(data)) -(observed[i]/nrow(data))^(2)

)/(nrow(data) -1)

49 }

50 st.error = sqrt(variance)

51

52 between = c()

53 for (i in 1: length(expected)) {

54 between[i] = (expected[i]<(observed[i]/nrow(data))+3*st.error[i]) &&

(expected[i]>(observed[i]/nrow(data)) -3*st.error[i])

55 }

56 m=cbind(expected , observed=observed/nrow(data), expected.freq=expected

*nrow(data), observed.freq=observed , ’obs+3se’=(observed/nrow(data))

+3*st.error , ’obs -3se’=(observed/nrow(data))-3*st.error , variance , st

.error , between)

57 print(m)

58 ### Chi -squared test

59 chisq.test(x=observed , p=expected)

60 }

61

62 ### Poisson?

63

64 ### 10 seasons worth of data

65

66 ### Home Goals

67 t = table(pl.data$FTHG)

68 t = t/nrow(pl.data) #dividing to get goals per game

69 bar = t(cbind(as.matrix(t), dpois (0:max(pl.data$FTHG), lambda=mean(pl.

data$FTHG))))

70 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Poisson ’), main=’Home Goals

per game (2007/08 - 2016/17)’, xlab=’Goals’, ylab=’Proportion of

Games ’, border=’black ’)

71

72 ### Chi -Squared test and finding if they lie in 3sigma either side

73 assess_fit(expected = dpois (0: max(pl.data$FTHG), lambda=mean(pl.data$

92

FTHG)), observed = table(pl.data$FTHG), data = pl.data)

74

75 ### Away Goals

76 t = table(pl.data$FTAG)

77 t = t/nrow(pl.data) #dividing to get goals per game

78 bar = t(cbind(as.matrix(t), dpois (0:max(pl.data$FTAG), lambda=mean(pl.

data$FTAG))))

79 barplot(bar , ylim=c(0, 0.45), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Poisson ’), main=’Away Goals

per game (2007/08 - 2016/17)’, xlab=’Goals’, ylab=’Proportion of

Games ’, border=’black ’)

80

81 # Assessing fit

82 assess_fit(expected = dpois (0: max(pl.data$FTAG), lambda=mean(pl.data$

FTAG)), observed = table(pl.data$FTAG), data = pl.data)

83

84

85 ### 2016/17 Season

86

87 ### Home Goals

88

89 # Creating Histogram

90 t = table(E0_2016$FTHG)

91 t = t/nrow(E0_2016) #dividing to get goals per game

92 bar = t(cbind(as.matrix(t), dpois (0:max(E0_2016$FTHG), lambda=mean(E0_

2016$FTHG))))

93 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Poisson ’), main=’Home Goals

per game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games’, border=

’black ’)

94

95 ### Chi -Squared test and finding if they lie in 3sigma either side

96 assess_fit(expected = dpois (0: max(E0_2016$FTHG), lambda=mean(E0_2016$

FTHG)), observed = table(E0_2016$FTHG), data = E0_2016)

97

98 ### Away Goals

99

100 # Creating Histogram

101 t = table(E0_2016$FTAG)

102 t = t/nrow(E0_2016) #dividing to get goals per game

103 bar = t(cbind(as.matrix(t), dpois (0:max(E0_2016$FTAG), lambda=mean(E0_

2016$FTAG))))

104 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Poisson ’), main=’Away Goals

per game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games’, border=

’black ’)

105

106 # Assessing fit

93

107 assess_fit(expected = dpois (0: max(E0_2016$FTAG), lambda=mean(E0_2016$

FTAG)), observed = table(E0_2016$FTAG), data = E0_2016)

108

109

110 ### Zero -Inflated Poisson?

111

112 require(ZIM) #loading package to allow use of zero inflated models

113 require(Rfast)

114

115 ### 2016/17 Season

116

117 ### Home goals

118 parameters = zip.mle(E0_2016$FTHG)

119

120 # Creating histogram

121 t = table(E0_2016$FTHG)

122 t = t/nrow(E0_2016) #dividing to get goals per game

123 bar = t(cbind(as.matrix(t), dzip (0:max(E0_2016$FTHG), lambda=parameters$

param [1], omega=parameters$param [2])))

124 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’ZIP’), main=’Home Goals per

game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games’, border=’

black ’)

125

126 # Assessing fit

127 assess_fit(expected = dzip (0: max(E0_2016$FTHG), lambda=parameters$param

[1], omega=parameters$param [2]), observed = table(E0_2016$FTHG), data

= E0_2016)

128

129 ### Away goals

130 parameters = zip.mle(E0_2016$FTAG)

131

132 # Creating histogram

133 t = table(E0_2016$FTAG)

134 t = t/nrow(E0_2016) #dividing to get goals per game

135 bar = t(cbind(as.matrix(t), dzip (0:max(E0_2016$FTAG), lambda=parameters$

param [1], omega=parameters$param [2])))

136 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’ZIP’), main=’Away Goals per

game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games’, border=’

black ’)

137

138 # Assessing fit

139 assess_fit(expected = dzip (0: max(E0_2016$FTAG), lambda=parameters$param

[1], omega=parameters$param [2]), observed = table(E0_2016$FTAG), data

= E0_2016)

140

141

94

142 ### Negative Binomial?

143

144 require(fitdistrplus)

145

146 ### 2016/17 Season

147

148 ### Home goals

149 parameters = fitdist(E0_2016$FTHG , distr=’nbinom ’, method=’mle’)

150

151 # Creating histogram

152 t = table(E0_2016$FTHG)

153 t = t/nrow(E0_2016) #dividing to get goals per game

154 bar = t(cbind(as.matrix(t), dnbinom (0:max(E0_2016$FTHG), size=parameters

$estimate [1], mu=parameters$estimate [2])))

155 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Negative Binomial ’), main=’

Home Goals per game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games

’, border=’black ’)

156

157 # Assessing fit

158 assess_fit(expected = dnbinom (0: max(E0_2016$FTHG), size=parameters$

estimate [1], mu=parameters$estimate [2]), observed = table(E0_2016$

FTHG), data = E0_2016)

159

160 ### Away goals

161 parameters = fitdist(E0_2016$FTAG , distr=’nbinom ’, method=’mle’)

162

163 # Creating histogram

164 t = table(E0_2016$FTAG)

165 t = t/nrow(E0_2016) #dividing to get goals per game

166 bar = t(cbind(as.matrix(t), dnbinom (0:max(E0_2016$FTAG), size=parameters

$estimate [1], mu=parameters$estimate [2])))

167 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Negative Binomial ’), main=’

Away Goals per game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games

’, border=’black ’)

168

169 # Assessing fit

170 assess_fit(expected = dnbinom (0: max(E0_2016$FTAG), size=parameters$

estimate [1], mu=parameters$estimate [2]), observed = table(E0_2016$

FTAG), data = E0_2016)

95

E Assessing distribution fits to goals data (Geometric-

Poisson)

E.1 Stan Code

data {

int ngames;

int<lower=0> y[ngames];

}

parameters {

real<lower=0, upper=1> omega;

real<lower=0, upper=1> prob;

real<lower=0> lambda;

}

model {

omega ~ uniform(0,1);

prob ~ uniform(0,1);

lambda ~ gamma(3.804279, 2.52015);

for (i in 1:ngames){

target += log_sum_exp(log(omega*prob*(1-prob)^(y[i])), log(1-omega)

+ poisson_lpmf(y[i] | lambda));

}

}

E.2 R Code

1 # Using Stan in R to do MCMC and obtain posterior estimates for

parameters lambda , p, omega

2 library(rstan)

3 rstan_options(auto_write = TRUE)

4 options(mc.cores = parallel :: detectCores ())

5

6 ### Defining a function to work out probabilities given by the Geom -Poi

distribution

7 dgeom_pois = function(x, omega , p, lam) {

8 probabilities = sapply(x, function(x){omega*p*dgeom(x, prob=p) + (1-

omega)*dpois(x, lambda=lam)})

9 return(probabilities)

10 }

11

12 assess_fit = function(expected , observed , data) {

13 expected = expected/sum(expected) #making the probabilities sum to 1

96

14 variance = c()

15 for (i in 1: length(observed)) {

16 variance[i] = ((observed[i]/nrow(data)) -(observed[i]/nrow(data))^(2)

)/(nrow(data) -1)

17 }

18 st.error = sqrt(variance)

19

20 between = c()

21 for (i in 1: length(expected)) {

22 between[i] = (expected[i]<(observed[i]/nrow(data))+3*st.error[i]) &&

(expected[i]>(observed[i]/nrow(data)) -3*st.error[i])

23 }

24 m=cbind(expected , observed=observed/nrow(data), expected.freq=expected

*nrow(data), observed.freq=observed , ’obs+3se’=(observed/nrow(data))

+3*st.error , ’obs -3se’=(observed/nrow(data))-3*st.error , variance , st

.error , between)

25 print(m)

26 ### Chi -squared test

27 chisq.test(x=observed , p=expected)

28 }

29

30 ### Plot of the prior for lambda = Gamma (3.804279 , 2.52015)

31 plot(seq (0,4,0.1), dgamma(seq (0,4,0.1), 3.804279 , 2.52015) , type=’l’,

xlab=expression(lambda), ylab=expression(paste("Prior density for ",

lambda)), main=expression(paste("Pior distribution for ", lambda)))

32

33 ### 2016/17 season

34

35 ### Home goals

36 data = list(y = E0_2016$FTHG , ngames = nrow(E0_2016))

37 fitting_model = stan_model(file = ’geom_pois.stan’)

38 fit = sampling(object = fitting_model , data = data , iter = 100000 ,

chains = 4)

39

40 # Looking at the fit and finding the posterior means for the parameters

41 print(fit)

42 plot(fit)

43

44 # Creating Histogram

45 t = table(E0_2016$FTHG)

46 t = t/nrow(E0_2016) #dividing to get goals per game

47 bar = t(cbind(as.matrix(t), dgeom_pois (0:max(E0_2016$FTHG), omega =0.08 ,

p=0.63 , lam =1.67)))

48 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Geometric -Poisson ’), main=’

Home Goals per game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games

’, border=’black ’)

49

97

50 # Getting the distributions given by the formula

51 y = dgeom_pois (0:max(E0_2016$FTHG), omega =0.08 , p=0.63 , lam =1.67)

52

53 # Assessing the fit

54 assess_fit(expected = y, observed = table(E0_2016$FTHG), data = E0_2016)

55

56 ### Away goals

57 data = list(y = E0_2016$FTAG , ngames = nrow(E0_2016))

58 fitting_model = stan_model(file = ’geom_pois.stan’)

59 fit = sampling(object = fitting_model , data = data , iter = 100000 ,

chains = 4, control = list(max_treedepth = 15))

60

61 # Looking at the fit and finding the posterior means for the parameters

62 print(fit)

63 plot(fit)

64

65 # Creating Histogram

66 t = table(E0_2016$FTAG)

67 t = t/nrow(E0_2016) #dividing to get goals per game

68 bar = t(cbind(as.matrix(t), dgeom_pois (0:max(E0_2016$FTAG), omega =0.28 ,

p=0.61 , lam =1.38)))

69 barplot(bar , ylim=c(0, 0.35), col=c(’red’, ’navy’), beside=T, legend=

rownames(bar), legend.text=c(’Observed ’, ’Geometric -Poisson ’), main=’

Away Goals per game 2016/17’, xlab=’Goals’, ylab=’Proportion of Games

’, border=’black ’)

70

71 # Getting the distributions given by the formula

72 y=dgeom_pois (0:max(E0_2016$FTAG), omega =0.28 , p=0.61 , lam =1.38)

73

74 # Assessing the fit

75 assess_fit(expected = y, observed = table(E0_2016$FTAG), data = E0_2016)

F Derivation of results for Zero-Inflated Poisson dis-

tribution

The probability mass function for a Zero-Inflated Poisson random variable, Y , is given by

Pr(Y = y) =

ω + (1− ω)exp(−λ) if y = 0,

(1− ω)
λyexp(−λ)

y!
if y > 0.

The Mean

First calculating the mean, by the expectation of a variable Y , we have

98

E[Y] =
∞∑
y=1

yPr(Y = y)

=
∞∑
y=1

y
(1− ω)λyexp(−λ)

y!

= (1− ω)
∞∑
y=1

y
λyexp(−λ)

y!

= (1− ω)λ

as
λyexp(−λ)

y!
is the probability function for the Poisson(λ) distribution and the mean of a

Poisson(λ) distribution is λ.

The Variance

To calculate the variance, we use Var[Y] = E[Y 2]− E[Y]2. So first finding E[Y 2].

E[Y]2 =
∞∑
y=1

y2Pr(Y = y)

=
∞∑
y=1

y2 (1− ω)λyexp(−λ)

y!

= (1− ω)
∞∑
y=1

y2λ
yexp(−λ)

y!

= (1− ω)λ(λ+ 1)

as
λyexp(−λ)

y!
is the probability function for the Poisson(λ) distribution and we know that

E[Y]2 = λ(λ+ 1) if Y | λ ∼ Poisson(λ).

Hence, by rearrangement, the variance is

Var[Y] = E[Y 2]− E[Y]2

= λ(1− ω)(1 + ωλ)

Hence for the Zero-Inflated Poisson model, the mean and variance are given by

E[Y] = (1− ω)λ and Var[Y] = λ(1− ω)(1 + ωλ)

Maximum Likelihood Estimates

99

Now consider a sample y = (y1, ..., yn) of independent and identically distributed random

variables Yi | λ, ω ∼ ZIP(λ, ω). Recall the probability distribution function for a random

variable Y | λ, ω ∼ ZIP(λ, ω) is

Pr(Y = y) =

ω + (1− ω)exp(−λ) if y = 0,

(1− ω)
λyexp(−λ)

yi!
if y > 0.

Let r denote the number of zero observations in the sample y. Then the likelihood function

l(λ, ω; y) of the sample y is given by

l(λ, ω; y) =
n∏
i=1

Pr(Y = yi)

=
∏
yi=0

(ω + (1− ω)exp(−λ))
∏
yi>0

(1− ω)
λyiexp(−λ)

yi!

= (ω + (1− ω)exp(−λ))r(1− ω)n−r
λ

n∑
i=0

yi
exp(−λ(n− r))
y1! ...yn!

Note that the summation and the product of yi’s in this formula only have n− r elements

despite having the limit going up to n, as r of them are when yi = 0.

If we take logarithms, then the log-likelihood, L(λ, ω; y) = log l(λ, ω; y), is given by

L(λ, ω; y) = rlog(ω+(1−ω)exp(−λ))+(n−r)log(1−ω)+
n∑
i=0

yilog(λ)−λ(n−r)−log(y1! ...yn!)

First partial differentiating this with respect to ω, we get

∂L

∂ω
=

r(1− exp(−λ))

ω + (1− ω)exp(−λ)
− n− r

1− ω

Now setting this to zero, ∂L
∂ω

= 0, to identify the two maxima/minima, gives

r(1− e−λ)
ω + (1− ω)e−λ

− n− r
1− ω

= 0

100

=⇒ r(1− ω)(1− e−λ) + (r − n)(ω + (1− ω)e−λ) = 0

=⇒ r(1− e−λ − ω + ωe−λ) + rω + r(1− ω)e−λ − nω − n(1− ω)e−λ = 0

=⇒ r − re−λ − rω + rωe−λ + rω + re−λ − rωe−λ − nω − ne−λ + nωe−λ = 0

=⇒ r − nω − ne−λ + nωe−λ = 0

=⇒ r − e−λ = ω(n− ne−λ)

=⇒ ω =
r − e−λ

n(1− e−λ)
Hence the maximum likelihood estimate for ω is

ω̂ =
r − e−λ

n(1− e−λ)
.

Now to find the maximum likelihood estimate for λ, we need to differentiate L(λ, ω; y)

with respect to λ.

∂L

∂λ
=
r(−(1− ω)exp(−λ))

ω + (1− ω)exp(−λ)
+

n∑
i=0

yi
λ
− (n− r)

=
rexp(−λ)(ω − 1)

ω + (1− ω)exp(−λ)
+

n∑
i=0

yi
λ
− (n− r)

Now setting this to zero, ∂L
∂λ

= 0, and substituting in ω = r−e−λ
n(1−e−λ)

, then we get

re−λ(r − n)

r(1− e−λ)
+

n∑
i=0

yi
λ
− (n− r) = 0

=⇒ re−λ(r − n) + r(1− e−λ)
n∑
i=0

yi
λ

+ (r − n)(r(1− e−λ)) = 0

=⇒ r2e−λ − re−λn+ r(1− e−λ)
n∑
i=0

yi
λ

+ r2 − r2e−λ − nr + re−λn = 0

=⇒ r(1− e−λ)
n∑
i=0

yi
λ

+ r2 − nr = 0

=⇒ (1− e−λ)
n∑
i=0

yi
λ

+ r − n = 0

=⇒ (1− e−λ)
n∑
i=0

yi
λ

+ r − n = 0

=⇒ (1− e−λ)
n∑
i=0

yi = λ(n− r)

which requires numerical methods to solve.

101

G Derivation of results for Geometric-Poisson distri-

bution

The probability mass function of a Geometric-Poisson random variable, Y , is given by

Pr(Y = y) = ωp(1− p)y + (1− ω)
λye−λ

y!

The Mean

By the expectation of a variable Y , we have

E[Y] =
∞∑
y=1

yPr(Y = y)

=
∞∑
y=1

[
yωp(1− p)y + y(1− ω)

λyexp(−λ)

y!

]
= ωp(1− p)

∞∑
y=1

y(1− p)y−1 + (1− ω)
∞∑
y=1

yλyexp(−λ)

y!

= ωp(1− p)
(1

1− (1− p)

)2

+ λ(1− ω)

=
ω(1− p)

p
+ λ(1− ω)

as
λyexp(−λ)

y!
is the probability function for the Poisson(λ) distribution and the mean of a

Poisson(λ) distribution is λ and by using Geometric progression formulae.

The Variance

To calculate the variance, we first calculate E[Y 2],

E[Y 2] =
∞∑
y=1

y2Pr(Y = y)

=
∞∑
y=1

[
y2ωp(1− p)y + y2(1− ω)

λyexp(−λ)

y!

]
= ωp(1− p)

∞∑
y=1

y2(1− p)y−1 + (1− ω)
∞∑
y=1

y2λyexp(−λ)

y!

Consider the first term, then this can be simplified by using the geometric progression

formulae.

102

ωp(1− p)
∞∑
y=1

y2(1− p)y−1 = ωp(1− p)
∞∑
y=1

y(y + 1)(1− p)y−1 − ωp(1− p)
∞∑
y=1

y(1− p)y−1

= ωp(1− p) 2

(1− (1− p))3
− ω(1− p)

p

= ω(1− p)
(2

p2
− 1

p

)
Then, we have

E[Y 2] = ωp(1− p)
∞∑
y=1

y2(1− p)y−1 + (1− ω)
∞∑
y=1

y2λyexp(−λ)

y!

= ω(1− p)
(2

p2
− 1

p

)
+ (1− ω)λ(λ+ 1)

Hence by rearrangement and using the formula, Var[Y] = E[Y 2]−E[Y]2, the variance for

the Poisson-Geometric mixture distribution is

Var[Y] = ω(1− p)
(2

p2
− 1

p

)
− ω2(1− p2)2

p2
+ λ(1− ω)(1 + ωλ)− 2ωλ(1− p)(1− ω)

p

Hence for the Geometric-Poisson mixture distribution, the mean and variance are

E[Y] =
ω(1− p)

p
+ λ(1− ω)

Var[Y] = ω(1− p)
(2

p2
− 1

p

)
− ω2(1− p2)2

p2
+ λ(1− ω)(1 + ωλ)− 2ωλ(1− p)(1− ω)

p

H Implementing Baio & Blangiardo’s model (2010)

H.1 Stan Code

data {

int nteams;

int ngames;

int home_team[ngames];

int away_team[ngames];

int<lower=0> home_goals[ngames];

int<lower=0> away_goals[ngames];

}

103

parameters {

real home;

real mu_att;

real mu_def;

real tau_att;

real tau_def;

// parameters are made to sum to zero in the transformed parameters

vector[nteams-1] att_free;

vector[nteams-1] def_free;

}

transformed parameters {

vector[nteams] att;

vector[nteams] def;

vector[ngames] log_theta_home;

vector[ngames] log_theta_away;

// need to make sum(att)=sum(def)=0

for (k in 1:(nteams-1)) {

att[k] = att_free[k];

def[k] = def_free[k];

}

att[nteams] = -sum(att_free);

def[nteams] = -sum(def_free);

log_theta_home = home + att[home_team] + def[away_team];

log_theta_away = att[away_team] + def[home_team];

}

model {

home ~ normal(0, 10000);

mu_att ~ normal(0, 10000);

mu_def ~ normal(0, 10000);

tau_att ~ gamma(0.1, 0.1);

tau_def ~ gamma(0.1, 0.1);

att_free ~ normal(mu_att, 1/tau_att);

def_free ~ normal(mu_def, 1/tau_def);

home_goals ~ poisson_log(log_theta_home);

away_goals ~ poisson_log(log_theta_away);

104

}

H.2 R Code

R code to implement the model, obtain parameter plots, examples of predicting football

match and to create plot in Figure 14.

1 library(rstan)

2 library(shinystan)

3 rstan_options(auto_write = TRUE)

4 options(mc.cores = parallel :: detectCores ())

5

6 # Loading in the data into R

7

8 E0_2016 = read.csv(’E0_2016. csv’)

9 E0_2016 = E0_2016[rev(rownames(E0_2016)) ,][3:6]

10 E0_2016$HomeIndex = as.numeric(factor(E0_2016$HomeTeam))

11 E0_2016$AwayIndex = as.numeric(factor(E0_2016$AwayTeam))

12

13 # Preparing the data in R to use in Stan

14

15 teams = as.character(sort(unique(E0_2016$HomeTeam)))

16 HomeTeam = E0_2016$HomeIndex

17 AwayTeam = E0_2016$AwayIndex

18 HomeGoals = E0_2016$FTHG

19 AwayGoals = E0_2016$FTAG

20 nTeams = length(teams)

21 nGames = nrow(E0_2016)

22

23 data = list(nteams = nTeams , ngames = nGames , home_team = HomeTeam , away

_team = AwayTeam , home_goals = HomeGoals , away_goals = AwayGoals)

24

25 # Getting fit using the stan_model and sampling functions

26

27 fitting_model = stan_model(file = ’sum_to_zero.stan’)

28 fit = sampling(object = fitting_model , data = data , iter = 100000 ,

chains = 4, control = list(max_treedepth = 15))

29

30 # Looking at the fit

31 print(fit)

32

33 # Making the parameter plot figures

34 # Rather than using labels with indexes , we rename them to the teams

that they represent

35 new_labels=rev(c("ARS", "BOU", "BUR", "CHE", "CRY", "EVE", "HUL", "LEI",

"LIV", "MCI", "MUN", "MBO", "SOU", "STO", "SUN", "SWA", "TOT", "WAT"

, "WBA", "WHU"))

36 # Getting the figure and naming it att_figure (attack parameters)

105

37 att_figure = plot(fit , pars = c("att[1]", "att[2]", "att[3]", "att[4]",

"att[5]", "att[6]", "att[7]", "att[8]", "att[9]", "att [10]", "att [11]

", "att [12]", "att [13]", "att [14]", "att [15]", "att [16]", "att [17]",

"att [18]", "att [19]", "att [20]"))

38 att_figure + scale_y_continuous(labels=new_labels , breaks =1:20)

39

40 # Getting the figure and naming it def_figure (defence parameters)

41 def_figure = plot(fit , pars = c("def[1]", "def[2]", "def[3]", "def[4]",

"def[5]", "def[6]", "def[7]", "def[8]", "def[9]", "def [10]", "def [11]

", "def [12]", "def [13]", "def [14]", "def [15]", "def [16]", "def [17]",

"def [18]", "def [19]", "def [20]"))

42 def_figure + scale_y_continuous(labels=new_labels , breaks =1:20)

43

44 # Getting the shinystan page to make further analysis

45 fit_shinystan = as.shinystan(fit)

46 launch_shinystan(fit_shinystan)

47

48 ### Example to predict a football match between Manchester United and

Crystal Palace

49

50 list_of_draws = extract(fit)

51 home = list_of_draws$home

52 MUN_att = list_of_draws$att[,11]

53 MUN_def = list_of_draws$def[,11]

54 CRY_att = list_of_draws$att[,5]

55 CRY_def = list_of_draws$def[,5]

56

57 log_theta1 = home + MUN_att + CRY_def

58 log_theta2 = CRY_att + MUN_def

59

60 y1 = NULL; y2 = NULL

61 for (i in 1: length(log_theta1)) {

62 y1[i] = rpois(1, exp(log_theta1[i]))

63 y2[i] = rpois(1, exp(log_theta2[i]))

64 }

65

66 sum(round(y1 ,1) > round(y2 ,1))/length(log_theta1)

67 sum(round(y1 ,1) == round(y2 ,1))/length(log_theta1)

68 sum(round(y1 ,1) < round(y2 ,1))/length(log_theta1)

69

70 ### Example of how to perform a Bayesian hypothesis test

71

72 TOT_def = list_of_draws$def[,17]

73 MUN_def = list_of_draws$def[,11]

74 sum(MUN_def < TOT_def)/length(TOT_def)

75

76 ### Figure 14

77

106

78 att_sum = summary(fit , pars = c("att[1]", "att[2]", "att[3]", "att[4]",

"att[5]", "att[6]", "att[7]", "att[8]", "att[9]", "att [10]", "att [11]

", "att [12]", "att [13]", "att [14]", "att [15]", "att [16]", "att [17]",

"att [18]", "att [19]", "att [20]"))

79 att_mean = att_sum$summary[,’mean’]

80

81 def_sum = summary(fit , pars = c("def[1]", "def[2]", "def[3]", "def[4]",

"def[5]", "def[6]", "def[7]", "def[8]", "def[9]", "def [10]", "def [11]

", "def [12]", "def [13]", "def [14]", "def [15]", "def [16]", "def [17]",

"def [18]", "def [19]", "def [20]"))

82 def_mean = def_sum$summary[,’mean’]

83

84 new_labels=c("ARS", "BOU", "BUR", "CHE", "CRY", "EVE", "HUL", "LEI", "

LIV", "MCI", "MUN", "MBO", "SOU", "STO", "SUN", "SWA", "TOT", "WAT",

"WBA", "WHU")

85

86 cols = c(’red’,’firebrick4 ’,’brown’,’darkblue ’,’blue2’,’darkblue ’,’

orange ’,’dodgerblue2 ’,’red’,’deepskyblue ’,’firebrick ’,’firebrick1 ’,’

firebrick1 ’,’red’,’red’,’gray0 ’,’blue4 ’, ’gold1 ’, ’darkblue ’ ,’brown4

’)

87

88 data = data.frame(att_mean , def_mean , new_labels)

89

90 plot(att_mean , def_mean , col= cols , xlab = ’Attack ’, ylab = ’Defence ’,

main=’Team Effects ’, xlim=c(-0.6 ,0.6), ylim=c(-0.55 ,0.5))

91 abline(v=0); abline(h=0)

92 text(att_mean , def_mean , labels = data$new_labels , cex=0.7, pos =3)

93 text (0.55, -0.535, "Good Attack , Good Defence", cex =0.8)

94 text (-0.55, 0.475, "Bad Attack , Bad Defence", cex =0.8)

H.3 Extra Figures for Section 5

107

(a) Histogram for draws of home (b) Kernel Density Estimate for home

(c) Trace plot for home

(d) Autocorrelation plot for home

Figure 22: MCMC plots for home parameter

108

H.4 Posterior Summary Table

Attack Defence

Team mean sd 2.5% 50% 97.5% mean sd 2.5% 50% 97.5%

ARS 0.375 0.112 0.152 0.377 0.592 -0.116 0.130 -0.375 -0.113 0.130

BOU 0.078 0.126 -0.173 0.080 0.320 0.219 0.115 -0.006 0.219 0.440

BUR -0.228 0.141 -0.513 -0.224 0.039 0.039 0.121 -0.204 0.040 0.270

CHE 0.462 0.109 0.247 0.462 0.673 -0.320 0.144 -0.612 -0.315 -0.048

CRY -0.010 0.131 -0.273 -0.007 0.239 0.161 0.119 -0.074 0.162 0.393

EVE 0.170 0.120 -0.069 0.171 0.401 -0.127 0.129 -0.388 -0.124 0.114

HUL -0.250 0.143 -0.540 -0.245 0.022 0.368 0.110 0.150 0.369 0.580

LEI -0.045 0.131 -0.307 -0.043 0.204 0.159 0.119 -0.077 0.161 0.390

LIV 0.386 0.112 0.167 0.389 0.599 -0.152 0.131 -0.414 -0.151 0.096

MCI 0.409 0.109 0.190 0.411 0.620 -0.207 0.136 -0.479 -0.204 0.051

MUN 0.035 0.126 -0.218 0.037 0.280 -0.427 0.152 -0.745 -0.421 -0.19

MBO -0.511 0.162 -0.842 -0.505 -0.204 0.0002 0.122 -0.240 0.001 0.235

SOU -0.191 0.138 -0.470 -0.188 0.071 -0.072 0.126 -0.327 -0.071 0.172

STO -0.185 0.141 -0.470 -0.181 0.081 0.055 0.121 -0.187 0.056 0.290

SUN -0.448 0.157 -0.770 -0.443 -0.154 0.228 0.112 0.007 0.228 0.443

SWA -0.096 0.134 -0.367 -0.094 0.159 0.252 0.113 0.030 0.252 0.472

TOT 0.470 0.108 0.252 0.472 0.680 -0.474 0.160 -0.808 -0.467 -0.177

WAT -0.198 0.142 -0.486 -0.195 0.071 0.222 0.116 -0.004 0.222 0.445

WBA -0.148 0.136 -0.423 -0.144 0.111 -0.022 0.123 -0.266 -0.021 0.212

WHU -0.076 0.145 -0.367 -0.0720 0.200 0.215 0.126 -0.041 0.217 0.454

home 0.382 0.040 0.298 0.383 0.465

Table 21: Summary of the results from the implementation of Baio & Blangiardo’s model

(2010)

109

H.5 Simulating from the priors from Baio & Blangiardo’s model

(2010)

1 ### Simulating mu and tau parameters

2 ### Priors given by Baio & Blangiardo

3 #mu.att = rnorm (10000 , mean=0, sd=sqrt(1/0.0001))

4 #mu.def = rnorm (10000 , mean=0, sd=sqrt(1/0.0001))

5 #tau.att = rgamma (10000 , shape =0.1, scale =0.1)

6 #tau.def = rgamma (10000 , shape =0.1, scale =0.1)

7

8 ### Proposed more suitable priors

9 mu.att = rnorm (10000 , mean=0, sd=1)

10 mu.def = rnorm (10000 , mean=0, sd=1)

11 tau.att = rgamma (10000 , shape=10, scale =10)

12 tau.def = rgamma (10000 , shape=10, scale =10)

13

14 # simulating home advantage parameter

15

16 # home.adv = rnorm (10000 , mean=0, sd=sqrt(1/0.0001)) # Prior given by

Baio & Blangiardo

17 home.adv = rnorm (10000 , mean=0, sd=1) # Proposed more suitable prior

18

19 # simulating the next 4 parameters for home/away team attack and defence

depending on mu, tau

20 home.att = c()

21 home.def = c()

22 away.att = c()

23 away.def = c()

24 for (i in 1:10000){

25 home.att[i]=rnorm(1, mean=mu.att[i], sd=sqrt(1/tau.att[i]))

26 home.def[i]=rnorm(1, mean=mu.def[i], sd=sqrt(1/tau.def[i]))

27 away.att[i]=(-1)*home.att[i]

28 away.def[i]=(-1)*home.def[i]

29 }

30

31 # translating these into theta for home and away based on the above

parameters

32 # fitting in log linear model to find theta1 (home) and theta2 (away)

33 theta1 = c()

34 theta2 = c()

35 for (i in 1:10000){

36 theta1[i] = exp(home.adv[i] + home.att[i] + away.def[i])

37 theta2[i] = exp(away.att[i] + home.def[i])

38 }

39

40 # getting the scores by taking a random sample from a Poisson

distribution

41 y1=c()

110

42 y2=c()

43 for (i in 1:10000){

44 y1[i]= rpois(1, lambda=theta1[i])

45 y2[i]= rpois(1, lambda=theta2[i])

46 }

47

48 scores=data.frame(y1 , y2)

I Negative Binomial Bayesian hierarchical model

I.1 Stan Code

data {

int nteams;

int ngames;

int home_team[ngames];

int away_team[ngames];

int<lower=0> home_goals[ngames];

int<lower=0> away_goals[ngames];

}

parameters {

real mu_home_att;

real mu_away_att;

real mu_home_def;

real mu_away_def;

real<lower=0> sigma2_att;

real<lower=0> sigma2_def;

real<lower=0> phi_home;

real<lower=0> phi_away;

simplex[nteams] home_att_raw;

simplex[nteams] away_att_raw;

simplex[nteams] home_def_raw;

simplex[nteams] away_def_raw;

real home_att_scale;

real away_att_scale;

real home_def_scale;

real away_def_scale;

}

transformed parameters {

vector[ngames] log_mu_home;

111

vector[ngames] log_mu_away;

vector[nteams] home_att;

vector[nteams] away_att;

vector[nteams] home_def;

vector[nteams] away_def;

home_att = home_att_scale * (home_att_raw - 1.0/nteams);

away_att = away_att_scale * (away_att_raw - 1.0/nteams);

home_def = home_def_scale * (home_def_raw - 1.0/nteams);

away_def = away_def_scale * (away_def_raw - 1.0/nteams);

// getting mu in log form

log_mu_home = home_att[home_team] + away_def[away_team];

log_mu_away = away_att[away_team] + home_def[home_team];

}

model {

mu_home_att ~ normal(0.2, 1);

mu_away_att ~ normal(0, 1);

mu_home_def ~ normal(-0.2, 1);

mu_away_def ~ normal(0, 1);

sigma2_att ~ gamma(10, 10);

sigma2_def ~ gamma(10, 10);

phi_home ~ gamma(2.5, 0.05);

phi_away ~ gamma(2.5, 0.05);

home_att_scale ~ normal(0, 10);

away_att_scale ~ normal(0, 10);

home_def_scale ~ normal(0, 10);

away_def_scale ~ normal(0, 10);

home_att_raw ~ normal(mu_home_att, sigma2_att);

away_att_raw ~ normal(mu_away_att, sigma2_att);

home_def_raw ~ normal(mu_home_def, sigma2_def);

away_def_raw ~ normal(mu_away_def, sigma2_def);

home_goals ~ neg_binomial_2_log(log_mu_home, phi_home);

away_goals ~ neg_binomial_2_log(log_mu_away, phi_away);

}

112

I.2 R Code

R code to implement the model, obtain parameter plots, examples of hypothesis testing

and to create plots in Figures 18, 19 and 23.

1 library(dplyr)

2 library(rstan)

3 require(shinystan)

4 rstan_options(auto_write = TRUE)

5 options(mc.cores = parallel :: detectCores ())

6

7 # Loading in the data into R

8

9 E0_2016 = read.csv(’E0_2016. csv’)

10 E0_2016 = E0_2016[rev(rownames(E0_2016)) ,][3:6]

11 E0_2016$HomeIndex = as.numeric(factor(E0_2016$HomeTeam))

12 E0_2016$AwayIndex = as.numeric(factor(E0_2016$AwayTeam))

13

14 # Preparing the data in R to use in Stan

15

16 teams = as.character(sort(unique(E0_2016$HomeTeam)))

17 HomeTeam = E0_2016$HomeIndex

18 AwayTeam = E0_2016$AwayIndex

19 HomeGoals = E0_2016$FTHG

20 AwayGoals = E0_2016$FTAG

21 nTeams = length(teams)

22 nGames = nrow(E0_2016)

23

24 data = list(nteams = nTeams , ngames = nGames , home_team = HomeTeam , away

_team = AwayTeam , home_goals = HomeGoals , away_goals = AwayGoals)

25

26 # Getting the fit using the stan_model and sampling functions

27

28 fitting_model = stan_model(file = ’model_nb.stan’)

29 fit = sampling(object = fitting_model , data = data , iter = 100000 ,

chains = 4, control = list(max_treedepth = 15))

30

31 # Looking at the fit

32 print(fit)

33

34 # Making the parameter plot figures

35 # Rather than using labels with indexes , we rename them to the teams

that they represent

36 new_labels=rev(c("ARS", "BOU", "BUR", "CHE", "CRY", "EVE", "HUL", "LEI",

"LIV", "MCI", "MUN", "MBO", "SOU", "STO", "SUN", "SWA", "TOT", "WAT"

, "WBA", "WHU"))

37

38 home_att_figure = plot(fit , pars = c("home_att [1]", "home_att [2]", "home

_att[3]", "home_att[4]", "home_att[5]", "home_att[6]", "home_att[7]",

113

"home_att[8]", "home_att[9]", "home_att [10]", "home_att [11]", "home_

att [12]", "home_att [13]", "home_att [14]", "home_att [15]", "home_att

[16]", "home_att [17]", "home_att [18]", "home_att [19]", "home_att [20]"

), xlab=’home_attack Effects ’, main=’Home Attack Parameter Plot’)

39 home_att_figure + scale_y_continuous(labels=new_labels , breaks =1:20) +

ggtitle(’ Home Attack Parameter Plot’)

40

41 home_def_figure = plot(fit , pars = c("home_def [1]", "home_def [2]", "home

_def[3]", "home_def[4]", "home_def[5]", "home_def[6]", "home_def[7]",

"home_def[8]", "home_def[9]", "home_def [10]", "home_def [11]", "home_

def [12]", "home_def [13]", "home_def [14]", "home_def [15]", "home_def

[16]", "home_def [17]", "home_def [18]", "home_def [19]", "home_def [20]"

), xlab=’home_defack Effects ’)

42 home_def_figure + scale_y_continuous(labels=new_labels , breaks =1:20) +

xlab(’Home -Defence Effects ’) + ggtitle(’ Home Defence Parameter

Plot’)

43

44 away_att_figure = plot(fit , pars = c("away_att [1]", "away_att [2]", "away

_att[3]", "away_att[4]", "away_att[5]", "away_att[6]", "away_att[7]",

"away_att[8]", "away_att[9]", "away_att [10]", "away_att [11]", "away_

att [12]", "away_att [13]", "away_att [14]", "away_att [15]", "away_att

[16]", "away_att [17]", "away_att [18]", "away_att [19]", "away_att [20]"

))

45 away_att_figure + scale_y_continuous(labels=new_labels , breaks =1:20) +

xlab(’Away -Attack Effects ’) + ggtitle(’ Away Attack Parameter Plot’

)

46

47 away_def_figure = plot(fit , pars = c("away_def [1]", "away_def [2]", "away

_def[3]", "away_def[4]", "away_def[5]", "away_def[6]", "away_def[7]",

"away_def[8]", "away_def[9]", "away_def [10]", "away_def [11]", "away_

def [12]", "away_def [13]", "away_def [14]", "away_def [15]", "away_def

[16]", "away_def [17]", "away_def [18]", "away_def [19]", "away_def [20]"

))

48 away_def_figure + scale_y_continuous(labels=new_labels , breaks =1:20) +

xlab(’Away -Defence Effects ’) + ggtitle(’ Away Defence Parameter Plot

’)

49

50 # Getting the shinystan page to make further analysis

51 fit_shinystan = as.shinystan(fit)

52 launch_shinystan(fit_shinystan)

53

54 ### Example of hypothesis testing for Sunderland

55

56 list_of_draws = extract(fit)

57 SUN_home_att = list_of_draws$home_att[,15]

58 SUN_away_att = list_of_draws$away_att[,15]

59 SUN_home_def = list_of_draws$home_def[,15]

60 SUN_away_def = list_of_draws$away_def[,15]

114

61 sum(SUN_home_att > SUN_away_att)/length(SUN_home_att)

62 sum(SUN_home_def > SUN_away_def)/length(SUN_home_def)

63

64 ### Figure 18

65

66 home_att_sum = summary(fit , pars = c("home_att [1]", "home_att [2]", "home

_att[3]", "home_att[4]", "home_att[5]", "home_att[6]", "home_att[7]",

"home_att[8]", "home_att[9]", "home_att [10]", "home_att [11]", "home_

att [12]", "home_att [13]", "home_att [14]", "home_att [15]", "home_att

[16]", "home_att [17]", "home_att [18]", "home_att [19]", "home_att [20]"

))

67 home_att_mean = home_att_sum$summary[,’mean’]

68

69 home_def_sum = summary(fit , pars = c("home_def [1]", "home_def [2]", "home

_def[3]", "home_def[4]", "home_def[5]", "home_def[6]", "home_def[7]",

"home_def[8]", "home_def[9]", "home_def [10]", "home_def [11]", "home_

def [12]", "home_def [13]", "home_def [14]", "home_def [15]", "home_def

[16]", "home_def [17]", "home_def [18]", "home_def [19]", "home_def [20]"

))

70 home_def_mean = home_def_sum$summary[,’mean’]

71

72 new_labels=c("ARS", "BOU", "BUR", "CHE", "CRY", "EVE", "HUL", "LEI", "

LIV", "MCI", "MUN", "MBO", "SOU", "STO", "SUN", "SWA", "TOT", "WAT",

"WBA", "WHU")

73

74 cols = c(’red’,’firebrick4 ’,’brown’,’darkblue ’,’blue2’,’darkblue ’,’

orange ’,’dodgerblue2 ’,’red’,’deepskyblue ’,’firebrick ’,’firebrick1 ’,’

firebrick1 ’,’red’,’red’,’gray0 ’,’blue4 ’, ’gold1 ’, ’darkblue ’ ,’brown4

’)

75

76 home_data = data.frame(home_att_mean , home_def_mean , new_labels)

77

78 plot(home_att_mean , home_def_mean , col= cols , xlab = ’Attack ’, ylab = ’

Defence ’, main=’Home Effects ’, xlim=c(-0.8,1), ylim=c(-0.5 ,0.4))

79 abline(v=0); abline(h=0)

80 text(home_att_mean , home_def_mean , labels = home_data$new_labels , cex

=0.7, pos =2)

81 text (0.75, -0.47, "Good Attack , Good Defence", cex =0.6)

82 text (-0.65, 0.38, "Bad Attack , Bad Defence", cex =0.6)

83

84 ### Figure 19

85

86 away_att_sum = summary(fit , pars = c("away_att [1]", "away_att [2]", "away

_att[3]", "away_att[4]", "away_att[5]", "away_att[6]", "away_att[7]",

"away_att[8]", "away_att[9]", "away_att [10]", "away_att [11]", "away_

att [12]", "away_att [13]", "away_att [14]", "away_att [15]", "away_att

[16]", "away_att [17]", "away_att [18]", "away_att [19]", "away_att [20]"

))

115

87 away_att_mean = away_att_sum$summary[,’mean’]

88

89 away_def_sum = summary(fit , pars = c("away_def [1]", "away_def [2]", "away

_def[3]", "away_def[4]", "away_def[5]", "away_def[6]", "away_def[7]",

"away_def[8]", "away_def[9]", "away_def [10]", "away_def [11]", "away_

def [12]", "away_def [13]", "away_def [14]", "away_def [15]", "away_def

[16]", "away_def [17]", "away_def [18]", "away_def [19]", "away_def [20]"

))

90 away_def_mean = away_def_sum$summary[,’mean’]

91

92 new_labels=c("ARS", "BOU", "BUR", "CHE", "CRY", "EVE", "HUL", "LEI", "

LIV", "MCI", "MUN", "MBO", "SOU", "STO", "SUN", "SWA", "TOT", "WAT",

"WBA", "WHU")

93

94 cols = c(’red’,’firebrick4 ’,’brown’,’darkblue ’,’blue2’,’darkblue ’,’

orange ’,’dodgerblue2 ’,’red’,’deepskyblue ’,’firebrick ’,’firebrick1 ’,’

firebrick1 ’,’red’,’red’,’gray0 ’,’blue4 ’, ’gold1 ’, ’darkblue ’ ,’brown4

’)

95

96 away_data = data.frame(away_att_mean , away_def_mean , new_labels)

97

98 plot(away_att_mean , away_def_mean , col= cols , xlab = ’Attack ’, ylab = ’

Defence ’, main=’Away Effects ’, xlim=c(-0.65 ,0.8), ylim=c(-0.5 ,0.475))

99 abline(v=0); abline(h=0)

100 text(away_att_mean , away_def_mean , labels = away_data$new_labels , cex

=0.7, pos =2)

101 text (0.675 , -0.475, "Good Attack , Good Defence", cex =0.6)

102 text(-0.5, 0.45, "Bad Attack , Bad Defence", cex =0.6)

103

104 # Figure 23

105

106 attack_average = (home_att_mean + away_att_mean)/2

107 defence_average = (home_def_mean + away_def_mean)/2

108

109 new_labels=c("ARS", "BOU", "BUR", "CHE", "CRY", "EVE", "HUL", "LEI", "

LIV", "MCI", "MUN", "MBO", "SOU", "STO", "SUN", "SWA", "TOT", "WAT",

"WBA", "WHU")

110

111 cols = c(’red’,’firebrick4 ’,’brown’,’darkblue ’,’blue2’,’darkblue ’,’

orange ’,’dodgerblue2 ’,’red’,’deepskyblue ’,’firebrick ’,’firebrick1 ’,’

firebrick1 ’,’red’,’red’,’gray0 ’,’blue4 ’, ’gold1 ’, ’darkblue ’ ,’brown4

’)

112

113 overall_data = data.frame(attack_average , defence_average , new_labels)

114

115 plot(attack_average , defence_average , col= cols , xlab = ’Attack ’, ylab =

’Defence ’, main=’Overall Effects ’, xlim=c(-0.6 ,0.6))

116 abline(v=0); abline(h=0)

116

117 text(attack_average , defence_average , labels = overall_data$new_labels ,

cex=0.7, pos=2)

118 text (0.485 , -0.035, "Good Attack , Good Defence", cex =0.6)

119 text (-0.525, 0.325, "Bad Attack , Bad Defence", cex =0.6)

I.3 Simulating from the priors from the Negative Binomial model

1 number_of_simulations =10000

2 # simulating mu parameters

3 mu_home_att = rnorm(number_of_simulations , mean = 0.2, sd = 1)

4 mu_away_att = rnorm(number_of_simulations , mean = 0, sd = 1)

5 mu_home_def = rnorm(number_of_simulations , mean = -0.2, sd = 1)

6 mu_away_def = rnorm(number_of_simulations , mean = 0, sd = 1)

7

8 hist(mu_home_att , breaks =50, xlim=c(-3,3))

9 hist(mu_away_att , breaks =50, xlim=c(-3,3))

10 hist(mu_home_def , breaks =50, xlim=c(-3,3))

11 hist(mu_away_def , breaks =50, xlim=c(-3,3))

12

13 # simulating sigma2 and phi parameters

14 sigma2_att = rgamma(number_of_simulations , 10, 10)

15 sigma2_def = rgamma(number_of_simulations , 10, 10)

16 phi_home = rgamma(number_of_simulations , 2.5, 0.05)

17 phi_away = rgamma(number_of_simulations , 2.5, 0.05)

18

19 hist(sigma2_att , breaks =50)

20 hist(sigma2_def , breaks =50)

21 hist(phi_home , breaks =50)

22 hist(phi_away , breaks =50)

23

24 # simulating attack and defence parameters for each team

25 home_att = c()

26 home_def = c()

27 away_att = c()

28 away_def = c()

29 for (i in 1: number_of_simulations){

30 home_att[i]= rnorm(1, mean = mu_home_att , sd = sqrt(sigma2_att))

31 away_att[i]= rnorm(1, mean = mu_away_att , sd = sqrt(sigma2_att))

32 home_def[i]= rnorm(1, mean = mu_home_def , sd = sqrt(sigma2_def))

33 away_def[i]= rnorm(1, mean = mu_away_def , sd = sqrt(sigma2_def))

34 }

35

36 hist(home_att , breaks =50, xlim=c(-4,4))

37 hist(away_att , breaks =50, xlim=c(-4,4))

38 hist(home_def , breaks =50, xlim=c(-4,4))

39 hist(away_def , breaks =50, xlim=c(-4,4))

40

41 # fitting in log linear model

117

42 log_mu_1 = c()

43 log_mu_2 = c()

44 for (i in 1: number_of_simulations){

45 log_mu_1[i] = home_att[i] + away_def[i]

46 log_mu_2[i] = away_att[i] + home_def[i]

47 }

48

49 hist(log_mu_1, breaks =50, xlim=c(-5,5))

50 hist(log_mu_2, breaks =50, xlim=c(-5,5))

51

52 # getting the scores by taking a random sample from a Poisson

distribution

53 y1=c()

54 y2=c()

55 for (i in 1: number_of_simulations){

56 y1[i]= rnbinom(1, size = phi_home[i], mu = exp(log_mu_1[i]))

57 y2[i]= rnbinom(1, size = phi_away[i], mu = exp(log_mu_2[i]))

58 }

59

60 hist(y1 , breaks =50)

61 hist(y2 , breaks =50)

62

63 scores=data.frame(y1 , y2)

118

I.4 Extra Tables and Figures for Section 6

Figure 23: A plot of the posterior means of the attack and defence parameters for each

team

119

Home Attack Home Defence

Team mean sd 2.5% 50% 97.5% mean sd 2.5% 50% 97.5%

ARS 0.344 0.176 -0.012 0.347 0.675 -0.174 0.181 -0.548 -0.167 0.165

BOU 0.227 0.185 -0.149 0.231 0.578 0.175 0.158 -0.139 0.177 0.476

BUR -0.125 0.206 -0.534 -0.121 0.270 -0.076 0.173 -0.425 -0.072 0.256

CHE 0.706 0.152 0.409 0.706 1.005 -0.149 0.178 -0.512 -0.144 0.185

CRY -0.210 0.209 -0.619 -0.208 0.193 0.084 0.164 -0.245 0.085 0.399

EVE 0.427 0.168 0.087 0.432 0.744 -0.191 0.182 -0.568 -0.184 0.150

HUL -0.028 0.201 -0.431 -0.025 0.353 0.284 0.152 -0.015 0.286 0.580

LEI 0.085 0.195 -0.306 0.089 0.454 0.071 0.163 -0.254 0.073 0.385

LIV 0.498 0.162 0.169 0.503 0.806 -0.113 0.177 -0.471 -0.108 0.224

MCI 0.271 0.179 -0.093 0.275 0.609 -0.137 0.180 -0.506 -0.132 0.203

MUN -0.145 0.205 -0.551 -0.142 0.249 -0.312 0.200 -0.746 -0.300 0.043

MBO -0.521 0.211 -0.964 -0.517 -0.117 0.008 0.167 -0.328 0.009 0.330

SOU -0.524 0.210 -0.963 -0.520 -0.123 -0.035 0.171 -0.378 -0.031 0.293

STO -0.218 0.207 -0.624 -0.217 0.184 0.042 0.167 -0.292 0.044 0.361

SUN -0.557 0.216 -1.022 -0.549 -0.153 0.271 0.152 -0.027 0.273 0.566

SWA -0.079 0.204 -0.488 -0.076 0.311 0.274 0.153 -0.026 0.276 0.568

TOT 0.540 0.158 0.219 0.544 0.840 -0.402 0.224 -0.902 -0.381 -0.015

WAT -0.163 0.209 -0.576 -0.161 0.238 0.167 0.159 -0.147 0.169 0.469

WBA -0.091 0.202 -0.496 -0.087 0.295 -0.014 0.169 -0.352 -0.011 0.312

WHU -0.437 0.208 -0.846 -0.439 -0.029 0.226 0.155 -0.081 0.229 0.526

Table 22: Summary of the home parameter results from the implementation the Negative

Binomial model

120

Away Attack Away Defence

Team mean sd 2.5% 50% 97.5% mean sd 2.5% 50% 97.5%

ARS 0.490 0.152 0.180 0.495 0.775 -0.039 0.184 -0.410 -0.035 0.311

BOU -0.048 0.202 -0.455 -0.044 0.336 0.248 0.160 -0.078 0.253 0.547

BUR -0.384 0.223 -0.840 -0.379 0.040 0.162 0.167 -0.175 0.166 0.477

CHE 0.294 0.175 -0.063 0.300 0.618 -0.486 0.234 -0.993 -0.468 -0.074

CRY 0.176 0.187 -0.205 0.180 0.530 0.241 0.160 -0.086 0.246 0.540

EVE -0.062 0.203 -0.473 -0.059 0.324 -0.037 0.184 -0.408 -0.033 0.315

HUL -0.585 0.250 -1.122 -0.568 -0.134 0.380 0.148 0.084 0.381 0.672

LEI -0.185 0.211 -0.608 -0.181 0.213 0.245 0.160 -0.080 0.250 0.546

LIV 0.380 0.166 0.040 0.386 0.687 -0.173 0.194 -0.566 -0.169 0.195

MCI 0.579 0.145 0.289 0.579 0.867 -0.262 0.198 -0.667 -0.257 0.113

MUN 0.227 0.180 -0.139 0.232 0.564 -0.476 0.227 -0.967 -0.459 -0.072

MBO -0.539 0.242 -1.056 -0.526 -0.097 0.002 0.179 -0.360 0.006 0.343

SOU 0.099 0.193 -0.290 0.103 0.465 -0.100 0.185 -0.472 -0.096 0.255

STO -0.186 0.211 -0.608 -0.182 0.216 0.069 0.173 -0.279 0.073 0.397

SUN -0.371 0.224 -0.831 -0.366 0.052 0.152 0.167 -0.185 0.155 0.4656

SWA -0.129 0.210 -0.548 -0.125 0.271 0.189 0.165 -0.147 0.194 0.497

TOT 0.506 0.150 0.199 0.511 0.790 -0.452 0.225 -0.937 -0.437 -0.047

WAT -0.274 0.218 -0.712 -0.270 0.139 0.259 0.158 -0.064 0.264 0.555

WBA -0.236 0.213 -0.664 -0.232 0.172 -0.020 0.182 -0.386 -0.016 0.326

WHU 0.250 0.180 -0.117 0.254 0.586 0.097 0.172 -0.247 0.100 0.421

Table 23: Summary of the away parameter results from the implementation the Negative

Binomial model

121

J Model Assessment

The following code is used in all of the following functions in this section to fit a stan

model (fit model), obtain the mode of a vector (which is used to find the maximum

apriori estimate) (get mode) and to obtain probabilities of a match or predict a score

(predict game).

1 fit_model = function(stan_file , data , iterations , chains) {

2 # function to fit a stan model

3 fitting_model = stan_model(file = stan_file)

4 return(sampling(object = fitting_model , data = data , iter = iterations

, chains = chains , control = list(max_treedepth = 15, adapt_delta =

0.99)))

5 }

6

7 getmode = function(vector) {

8 # function to find the mode of a vector

9 uniqv = unique(vector)

10 uniqv[which.max(tabulate(match(vector , uniqv)))]

11 }

12

13 predict_game = function(model_fit , home_index , away_index , data , model ,

scores = F){

14 # function to predict a game between two teams depending on what model

we have fitted

15 # NB = negative binomial ; BB = model given by Baio & Blangiardo

16 # scores = T if want to return prediction for goal scored , but by

default returns posterior probabilities

17 list_of_draws = extract(model_fit)

18 number_of_samples = length(list_of_draws$lp__)

19 if (model == ’NB’) {

20 # extracting the samples that we need

21 home_att = list_of_draws$home_att[,home_index]

22 home_def = list_of_draws$home_def[,home_index]

23 away_att = list_of_draws$away_att[,away_index]

24 away_def = list_of_draws$away_def[,away_index]

25 size_home = list_of_draws$phi_home

26 size_away = list_of_draws$phi_away

27

28 # creating the log_mu parameters

29 log_mu1 = home_att + away_def

30 log_mu2 = home_def + away_att

31

32 # simulating from a negative binomial distribution to obtain

predictive distribution

33 y1 = NULL; y2 = NULL

34 for (i in 1: number_of_samples) {

122

35 y1[i] = rnbinom(1, size = size_home , mu = exp(log_mu1[i]))

36 y2[i] = rnbinom(1, size = size_away , mu = exp(log_mu2[i]))

37 }

38 } else if (model == ’BB’) {

39 # extracting the samples that we need

40 home = list_of_draws$home

41 att_home = list_of_draws$att[,home_index]

42 att_away = list_of_draws$att[,away_index]

43 def_home = list_of_draws$def[,home_index]

44 def_away = list_of_draws$def[,away_index]

45

46 # creating the log_theta parameters

47 log_theta1 = home + att_home + def_away

48 log_theta2 = att_away + def_home

49

50 # simulating from a Poisson distribution to obtain predictive

distribution

51 y1 = NULL; y2 = NULL

52 for (i in 1: number_of_samples) {

53 y1[i] = rpois(1, lambda = exp(log_theta1[i]))

54 y2[i] = rpois(1, lambda = exp(log_theta2[i]))

55 }

56 }

57

58 teams = sort(as.character(unique(c(as.vector(data$HomeTeam), as.vector

(data$AwayTeam)))))

59

60 # calculating the estimated scores (posterior predictive mean of goals

scored)

61 score = data.frame(getmode(y1), getmode(y2))

62 colnames(score) = c(’FTHG’, ’FTAG’)

63

64 # calculating the estimated probabilities of events in data frame

format

65 probabilities = data.frame(sum(round(y1 ,1)>round(y2 ,1))/number_of_

samples ,

66 sum(round(y1 ,1)== round(y2 ,1))/number_of_

samples ,

67 sum(round(y1 ,1)<round(y2 ,1))/number_of_

samples)

68 colnames(probabilities) = c(teams[home_index], ’Draw’, teams[away_

index])

69

70 if (scores == T) {

71 # return posterior predictive mean of goals scored by each team

72 return(score)

73 } else {

74 # return data frame of probabilities

123

75 return(probabilities)

76 }

J.1 Cross Validation

1 WLD_validate = function(stan_file , test_set , train_set , model) {

2 # Win -Lose -Draw validate

3 # function to validate the correct outcome of a match by choosing the

outcome with the highest probability

4 # returns a vector of TRUEs and FALSEs for where the model predicted

the right outcome of the game

5 # to find cross validation score , take the mean of this vector (i.e.

percentage of correct estimates)

6

7 # building Stan data object for the training data set

8 training_data = list(nteams = length(as.character(sort(unique(c(as.

vector(train_set$HomeTeam), as.vector(train_set$AwayTeam)))))),

9 ngames = nrow(train_set),

10 home_team = train_set$HomeIndex ,

11 away_team = train_set$AwayIndex ,

12 home_goals = train_set$FTHG ,

13 away_goals = train_set$FTAG)

14

15 # fitting a stan model to our training data set

16 train = fit_model(stan_file = stan_file , training_data , iterations =

20000, chains = 4)

17

18 # choosing event with highest probability

19 # add T to prediction_log if prediction correct and F otherwise

20 prediction_log = NULL

21 for (i in 1:nrow(test_set)) {

22 probabilities = predict_game(model_fit = train ,

23 home_index = test_set[i,]$HomeIndex ,

24 away_index = test_set[i,]$AwayIndex ,

25 data = train_set ,

26 model = model)

27

28 # determine whether the highest probable event according to the

model is the observed outcome

29 if (test_set[i,]$FTHG > test_set[i,]$FTAG) {

30 prediction_log = c(prediction_log , (probabilities [,1] == max(

probabilities)))

31 } else if (test_set[i,]$FTHG == test_set[i,]$FTAG) {

32 prediction_log = c(prediction_log , (probabilities [,2] == max(

probabilities)))

33 } else if (test_set[i,]$FTHG < test_set[i,]$FTAG) {

34 prediction_log = c(prediction_log , (probabilities [,3] == max(

probabilities)))

124

35 }

36 }

37

38 # returning the vector of TRUEs and FALSEs for each game prediction

39 return(prediction_log)

40 }

41

42 MCCV = function(stan_file , iterations , test_percentage , data , model) {

43 # function to obtain MCCV score

44 # the training data is randomly split by taking a percentage of the

data

45 # we repeat this for number of iterations to obtain a set of CV scores

- call it Monte Carlo CV

46

47 MCCV_scores = NULL

48 for (i in 1: iterations) {

49 # splitting up the data into (test_percentage)% and (1-test_

percentage)% randomly

50 random = sample(nrow(data), test_percentage*nrow(data))

51 test_set = data[random ,]

52 train_set = data[-random ,]

53

54 # finding a CV score for this particular test/train set combination

and adding this to the MCCV scores

55 MCCV_scores[i] = mean(WLD_validate(stan_file , test_set , train_set ,

model))

56

57 # print progress of the algorithm

58 print(paste(i, ’. MCCV Score: ’, MCCV_scores[i]))

59 }

60

61 # return set of CV scores

62 return(MCCV_scores)

63 }

64

65 seqCV = function(stan_file , data , model , minimum_games) {

66 # function to obtain CV score

67 # training data is always past games

68 # assume that data is already ordered with the older games at the top

69

70 game_predictions_log = NULL

71

72 # splitting the data set to games we want to always use as the

training set and the test set

73 total_number_of_games = nrow(data)

74 train_set = data [1: minimum_games ,]

75 test_set = data[(minimum_games +1):nrow(data),]

76 data = data[(minimum_games +1):nrow(data),]

125

77

78 # set loop to carry on until there are still games to try and predict

79 while(!(nrow(train_set)==total_number_of_games)){

80 # to choose test set , we go through each game carry on until we find

a repeat in team

81 # get the games that we can use as our test set by going through

each game until we count a team twice

82 # if we add only 1 team or 0 teams , then we have found a repeating

team

83 teams = NULL; additions = 2; i=1

84 while (additions == 2) {

85 additions = 0

86 if (!(is.element(data[i,]$HomeIndex , teams))) {

87 teams = c(teams , data[i,]$HomeIndex)

88 additions = additions + 1

89 }

90 if (!(is.element(data[i,]$AwayIndex , teams))) {

91 teams = c(teams , data[i,]$AwayIndex)

92 additions = additions + 1

93 }

94 if (additions == 2) {

95 i = i + 1

96 }

97 }

98

99 # test_set now becomes the data frame with the games where no team

plays twice in

100 # re -label the data as the data minus the train_set games

101 test_set = data [1:i-1,]

102 data = data[i:nrow(data),]

103

104 # predicting games by choosing the highest probable outcome

105 game_predictions_log = c(game_predictions_log , WLD_validate(stan_

file , test_set , train_set , model))

106

107 # print progress of the algorithm

108 print(paste(’There are ’, nrow(data), ’ games left in the data set’)

)

109

110 # train_set now becomes all the data and games that have happened

before the test_set games

111 train_set = rbind(train_set , data [1:i-1,])

112 }

113

114 # return the vector of TRUEs and FALSEs for each game prediction

115 return(game_predictions_log)

116 }

117

126

118 ### Calculating MCCV score for BB model

119

120 BB_MCCV = MCCV(stan_file = ’sum_to_zero.stan’, iterations = 50, test_

percentage = 0.2, data = E0_2016, model = ’BB’)

121 mean(BB_MCCV) # mean

122 sd(BB_MCCV) # standard deviation

123 sd(BB_MCCV)/sqrt(length(BB_MCCV)) # standard error

124

125 ### Calculating MCCV score for NB model

126

127 NB_MCCV = MCCV(stan_file = ’model_nb.stan’, iterations = 50, test_

percentage = 0.2, data = E0_2016, model = ’NB’)

128 mean(NB_MCCV) # mean

129 sd(NB_MCCV) # standard deviation

130 sd(NB_MCCV)/sqrt(length(NB_MCCV)) # standard error

131

132 ### Calculating SeqCV score for BB model

133

134 BB_SeqCV = seqCV(stan_file = ’sum_to_zero.stan’, data = E0_2016, model =

’BB’, minimum_games =10)

135 mean(BB_SeqCV) # sequential CV score

136

137 ### Calculating SeqCV score for NB model

138

139 NB_SeqCV = seqCV(stan_file = ’model_nb.stan’, data = E0_2016, model = ’

NB’, minimum_games =10)

140 mean(NB_SeqCV) # sequential CV score

J.2 Brier Score

1 calculate_BS = function(stan_file , test_set , train_set , model) {

2 # BS = 1/N sum(O_i - p_i) where O_i = 1 if event occured and 0

otherwise and p_i is probability of event

3 # function to calculate the Brier Score for a set of games given in

the test_set

4 # returns the Brier score for the test_set

5

6 # building Stan data object for the training data set

7 training_data = list(nteams = length(as.character(sort(unique(c(as.

vector(train_set$HomeTeam), as.vector(train_set$AwayTeam)))))),

8 ngames = nrow(train_set),

9 home_team = train_set$HomeIndex ,

10 away_team = train_set$AwayIndex ,

11 home_goals = train_set$FTHG ,

12 away_goals = train_set$FTAG)

13

14 # fitting a stan model to our training data set

15 train = fit_model(stan_file = stan_file , training_data , iterations =

20000, chains = 4)

127

16

17 # calulating Brier score by choosing event with highest probability

and seeing if the event occured

18 Brier_score = 0

19 for (i in 1:nrow(test_set)) {

20 probabilities = predict_game(model_fit = train ,

21 home_index = test_set[i,]$HomeIndex ,

22 away_index = test_set[i,]$AwayIndex ,

23 data = train_set ,

24 model = model)

25

26 # need to find our forecast (i.e. highest probable event) and then

check if it occured

27 # then we add appropriately to the Brier score

28 if (test_set[i,]$FTHG > test_set[i,]$FTAG) {

29 Brier_score = Brier_score + (1- probabilities [,1]) ^(2) + (0-

probabilities [,2]) ^(2) + (0- probabilities [,3]) ^(2)

30 } else if (test_set[i,]$FTHG == test_set[i,]$FTAG) {

31 Brier_score = Brier_score + (0- probabilities [,1]) ^(2) + (1-

probabilities [,2]) ^(2) + (0- probabilities [,3]) ^(2)

32 } else if (test_set[i,]$FTHG < test_set[i,]$FTAG) {

33 Brier_score = Brier_score + (0- probabilities [,1]) ^(2) + (0-

probabilities [,2]) ^(2) + (1- probabilities [,3]) ^(2)

34 }

35 }

36

37 Brier_score = (Brier_score/nrow(test_set))

38

39 # return Brier score

40 return(Brier_score)

41 }

42

43 MCBrier = function(stan_file , iterations , test_percentage , data , model)

{

44 # function to obtain MCBrier score

45 # the training data is randomly split by taking a percentage of the

data

46 # we repeat this for number of iterations to obtain a set of Brier

scores - call it Monte Carlo Brier score

47

48 Brier_scores = NULL

49 for (i in 1: iterations) {

50 # splitting up the data into (test_percentage)% and (1-test_

percentage)% randomly

51 random = sample(nrow(data), test_percentage*nrow(data))

52 test_set = data[random ,]

53 train_set = data[-random ,]

54

128

55 # finding a Brier score for this particular test/train set

combination and adding this to the Brier scores

56 Brier_scores[i] = calculate_BS(stan_file , test_set , train_set , model

)

57

58 # print progress of the algorithm

59 print(paste(i, ’. Brier Score: ’, Brier_scores[i]))

60 }

61

62 # return set of Brier scores

63 return(Brier_scores)

64 }

65

66 seqBrier = function(stan_file , data , model , minimum_games) {

67 # function to obtain sequential Brier score

68 # training data is always past games

69 # assume that data is already ordered with the older games at the top

70

71 Brier_score = 0

72 total_number_of_test_games = nrow(data) - minimum_games

73

74 # splitting the data set to games we want to always use as the

training set and the test set

75 total_number_of_games = nrow(data)

76 train_set = data [1: minimum_games ,]

77 test_set = data[(minimum_games +1):nrow(data),]

78 data = data[(minimum_games +1):nrow(data),]

79

80 # set loop to carry on until there are still games to try and predict

81 while(!(nrow(train_set)==total_number_of_games)){

82 # to choose test set , we go through each game carry on until we find

a repeat in team

83 # get the games that we can use as our test set by going through

each game until we count a team twice

84 # if we add only 1 team or 0 teams , then we have found a repeating

team

85 teams = NULL; additions = 2; i=1

86 while (additions == 2) {

87 additions = 0

88 if (!(is.element(data[i,]$HomeIndex , teams))) {

89 teams = c(teams , data[i,]$HomeIndex)

90 additions = additions + 1

91 }

92 if (!(is.element(data[i,]$AwayIndex , teams))) {

93 teams = c(teams , data[i,]$AwayIndex)

94 additions = additions + 1

95 }

96 if (additions == 2) {

129

97 i = i + 1

98 }

99 }

100

101 # test_set now becomes the data frame with the games where no team

plays twice in

102 # re -label the data as the data minus the train_set games

103 test_set = data [1:i-1,]

104 data = data[i:nrow(data),]

105

106 # calculating BS for test data set and adding to the overall Brier

score

107 # but need to multiply by nrow(test_set) and then divide by total

number of games at the end

108 Brier_score = Brier_score + (nrow(test_set)*calculate_BS(stan_file ,

test_set , train_set , model))

109

110 # print progress of the algorithm

111 print(paste(’There are ’, nrow(data), ’ games left in the data set’)

)

112

113 # train_set now becomes all the data and games that have happened

before the test_set games

114 train_set = rbind(train_set , data [1:i-1,])

115 }

116

117 Brier_score = (Brier_score/total_number_of_test_games)

118 # return the Brier score

119 return(Brier_score)

120 }

121

122 ### Calculating the Brier score for BB model

123

124 BB_SeqBrier = seqBrier(stan_file = ’sum_to_zero.stan’, data = E0_2016,

model = ’BB’, minimum_games = 10)

125

126 ### Calculating the Brier score for NB model

127

128 NB_SeqBrier = seqBrier(stan_file = ’model_nb.stan’, data = E0_2016,

model = ’NB’, minimum_games = 10)

J.3 Rank Probability Score

1 calculate_RPS = function(stan_file , test_set , train_set , model) {

2 # function to calculate the Rank Probability Score for a set of games

given in the test_set

3 # returns the sum of the RPS scores for each game by default , if mean

==T, then returns the mean RPS per game

4

130

5 # building Stan data object for the training data set

6 training_data = list(nteams = length(as.character(sort(unique(c(as.

vector(train_set$HomeTeam), as.vector(train_set$AwayTeam)))))),

7 ngames = nrow(train_set),

8 home_team = train_set$HomeIndex ,

9 away_team = train_set$AwayIndex ,

10 home_goals = train_set$FTHG ,

11 away_goals = train_set$FTAG)

12

13 # fitting a stan model to our training data set

14 train = fit_model(stan_file = stan_file , training_data , iterations =

20000, chains = 4)

15

16 # calulating RPS

17 RPS = 0

18 for (i in 1:nrow(test_set)) {

19 probabilities = predict_game(model_fit = train ,

20 home_index = test_set[i,]$HomeIndex ,

21 away_index = test_set[i,]$AwayIndex ,

22 data = train_set ,

23 model = model)

24

25 # calculating RPS formula and adding to RPS variable

26 sum_probabilities_vector = c(sum(probabilities [1]), sum(

probabilities [1:2]) , sum(probabilities [1:3]))

27 if (test_set[i,]$FTHG > test_set[i,]$FTAG) {

28 observed_vector = c(1,1,1)

29 } else if (test_set[i,]$FTHG == test_set[i,]$FTAG) {

30 observed_vector = c(0,1,1)

31 } else if (test_set[i,]$FTHG < test_set[i,]$FTAG) {

32 observed_vector = c(0,0,1)

33 }

34 RPS = RPS + ((sum_probabilities_vector [1] - observed_vector [1]) ^(2)

+

35 (sum_probabilities_vector [2] - observed_vector [2]) ^(2)

+

36 (sum_probabilities_vector [3] - observed_vector [3]) ^(2))

/2

37 }

38

39 # return total sum of RPS for the games

40 return(RPS)

41 }

42

43 seqRPS = function(stan_file , data , model , minimum_games) {

44 # function to obtain RPS

45 # training data is always past games

46 # assume that data is already ordered with the older games at the top

131

47

48 RPS = 0

49 total_number_of_test_games = nrow(data) - minimum_games

50

51 # splitting the data set to games we want to always use as the

training set and the test set

52 total_number_of_games = nrow(data)

53 train_set = data [1: minimum_games ,]

54 test_set = data[(minimum_games +1):nrow(data),]

55 data = data[(minimum_games +1):nrow(data),]

56

57 # set loop to carry on until there are still games to try and predict

58 while(!(nrow(train_set)==total_number_of_games)){

59 # to choose test set , we go through each game carry on until we find

a repeat in team

60 # get the games that we can use as our test set by going through

each game until we count a team twice

61 # if we add only 1 team or 0 teams , then we have found a repeating

team

62 teams = NULL; additions = 2; i=1

63 while (additions == 2) {

64 additions = 0

65 if (!(is.element(data[i,]$HomeIndex , teams))) {

66 teams = c(teams , data[i,]$HomeIndex)

67 additions = additions + 1

68 }

69 if (!(is.element(data[i,]$AwayIndex , teams))) {

70 teams = c(teams , data[i,]$AwayIndex)

71 additions = additions + 1

72 }

73 if (additions == 2) {

74 i = i + 1

75 }

76 }

77

78 # test_set now becomes the data frame with the games where no team

plays twice in

79 # re -label the data as the data minus the train_set games

80 test_set = data [1:i-1,]

81 data = data[i:nrow(data),]

82

83 # calculating RPS for test data set and adding to the overall RPS

84 RPS = RPS + calculate_RPS(stan_file , test_set , train_set , model ,

mean = F)

85

86 # print progress of the algorithm

87 print(paste(’There are ’, nrow(data), ’ games left in the data set’)

)

132

88

89 # train_set now becomes all the data and games that have happened

before the test_set games

90 train_set = rbind(train_set , data [1:i-1,])

91 }

92

93 # return the Rank Probability Score - to get mean RPS for each game ,

need to divide by nrow(data) - minimum games

94 return(RPS)

95 }

96

97 ### Calculating the RPS for BB model

98

99 BB_SeqRPS = seqRPS(stan_file = ’sum_to_zero.stan’, data = E0_2016, model

= ’BB’, minimum_games = 10)

100

101 BB_SeqRPS/370 # average RPS per game for BB model

102

103 ### Calculating the RPS for NB model

104

105 NB_SeqRPS = seqRPS(stan_file = ’model_nb.stan’, data = E0_2016, model =

’NB’, minimum_games = 10)

106

107 NB_SeqRPS/370 # average RPS per game for NB model

J.4 Betting Assessment

1 calculate_PL = function(stan_file , test_set , train_set , model , wager) {

2 # function to calculate the profit/loss for a set of games given in

the test_set

3 # returns the profit/loss given a wager bet on each game

4

5 # building Stan data object for the training data set

6 training_data = list(nteams = length(as.character(sort(unique(c(as.

vector(train_set$HomeTeam), as.vector(train_set$AwayTeam)))))),

7 ngames = nrow(train_set),

8 home_team = train_set$HomeIndex ,

9 away_team = train_set$AwayIndex ,

10 home_goals = train_set$FTHG ,

11 away_goals = train_set$FTAG)

12

13 # fitting a stan model to our training data set

14 train = fit_model(stan_file = stan_file , training_data , iterations =

20000, chains = 4)

15

16 # calulating P/L by choosing event with highest probability and seeing

if the event occured

17 profit_loss = c()

18 for (i in 1:nrow(test_set)) {

133

19 probabilities = predict_game(model_fit = train ,

20 home_index = test_set[i,]$HomeIndex ,

21 away_index = test_set[i,]$AwayIndex ,

22 data = train_set ,

23 model = model)

24

25 # need to find highest probable event and then add to returns if the

forecast is correct

26 # add profit/loss returns to profit_loss

27 if ((probabilities [,1] == max(probabilities)) & (test_set[i,]$FTHG >

test_set[i,]$FTAG)) {

28 profit_loss = c(profit_loss , wager*test_set[i,]$B365H - wager) #

forecast for home win correct

29 } else if ((probabilities [,2] == max(probabilities)) & (test_set[i,]

$FTHG == test_set[i,]$FTAG)) {

30 profit_loss = c(profit_loss , wager*test_set[i,]$B365D - wager) #

forecast for draw correct

31 } else if ((probabilities [,3] == max(probabilities)) & (test_set[i,]

$FTHG < test_set[i,]$FTAG)) {

32 profit_loss = c(profit_loss , wager*test_set[i,]$B365A - wager) #

forecast for away win correct

33 } else {

34 profit_loss = c(profit_loss , - wager) # forecast was incorrect so

no returns , just loss

35 }

36 }

37

38 # return profit/loss

39 return(profit_loss)

40 }

41

42 seqBetting = function(stan_file , data , model , minimum_games) {

43 # function to obtain profit loss when betting on the highest probable

event at closing price at B365

44 # training data is always past games

45 # assume that data is already ordered with the older games at the top

46

47 profit_loss = c()

48

49 # splitting the data set to games we want to always use as the

training set and the test set

50 total_number_of_games = nrow(data)

51 train_set = data [1: minimum_games ,]

52 test_set = data[(minimum_games +1):nrow(data),]

53 data = data[(minimum_games +1):nrow(data),]

54

55 # set loop to carry on until there are still games to try and predict

56 while(!(nrow(train_set)==total_number_of_games)){

134

57 # to choose test set , we go through each game carry on until we find

a repeat in team

58 # get the games that we can use as our test set by going through

each game until we count a team twice

59 # if we add only 1 team or 0 teams , then we have found a repeating

team

60 teams = NULL; additions = 2; i=1

61 while (additions == 2) {

62 additions = 0

63 if (!(is.element(data[i,]$HomeIndex , teams))) {

64 teams = c(teams , data[i,]$HomeIndex)

65 additions = additions + 1

66 }

67 if (!(is.element(data[i,]$AwayIndex , teams))) {

68 teams = c(teams , data[i,]$AwayIndex)

69 additions = additions + 1

70 }

71 if (additions == 2) {

72 i = i + 1

73 }

74 }

75

76 # test_set now becomes the data frame with the games where no team

plays twice in

77 # re -label the data as the data minus the train_set games

78 test_set = data [1:i-1,]

79 data = data[i:nrow(data),]

80

81 # calculating profit/loss for test data set and adding to the

overall profit/loss

82 profit_loss = c(profit_loss , calculate_PL(stan_file , test_set , train

_set , model , wager = 10))

83

84 # print progress of the algorithm

85 print(paste(’There are ’, nrow(data), ’ games left in the data set’)

)

86

87 # train_set now becomes all the data and games that have happened

before the test_set games

88 train_set = rbind(train_set , data [1:i-1,])

89 }

90

91 # return the final profit/loss for each game

92 return(profit_loss)

93 }

94

95 ### Calculating the profit/loss by using BB model

96

135

97 BB_Bet = seqBetting(stan_file = ’sum_to_zero.stan’, data = E0_2016,

model = ’BB’, minimum_games =10)

98 sum(BB_Bet)

99

100 # Looking at table of profit/loss returns by using BB model

101 table(BB_Bet)

102

103 ### Calculating the profit/loss by using NB model

104

105 NB_Bet = seqBetting(stan_file = ’model_nb.stan’, data = E0_2016, model =

’NB’, minimum_games =10)

106 sum(NB_Bet)

107

108 # Looking at table of profit/loss returns by using NB model

109 table(NB_Bet)

110

111 ### Figure 20

112

113 plot(cumsum(NB_Bet), main = ’Profit -Loss Returns for each model’,

114 xlab = ’Game Number ’, ylab = ’Profit -Loss (in ?s)’, pch=’.’, col =

’red’, ylim = c(0 ,1100))

115 lines(cumsum(NB_Bet), lwd=1, col = ’red’)

116 points(cumsum(BB_Bet), pch=’.’, col = ’blue’)

117 lines(cumsum(BB_Bet), lwd=1, col = ’blue’)

118 legend(’topleft ’,legend = c(’Baio & Blangiardo Poisson Model’, ’Negative

Binomial ’), fill = c(’blue’, ’red’))

J.5 Predict League Table

1 get_table = function(data) {

2 # function to obtain a league table

3 # data passed must be a data frame of results with team names and

scores passed using column names FTHG (home goals) and FTAG (away

goals)

4

5 # getting the team names in alphabetical order

6 teams = as.character(sort(unique(c(as.vector(data$HomeTeam), as.vector

(data$AwayTeam)))))

7

8 # creating empty league table

9 # GP = games played

10 # HW = home win , HD = home draw , HL = home loss , HF = home goals for ,

HA = home goals against , HGD = home goal difference

11 # AW = away win , AD = away draw , AL = away loss , AF = away goals for ,

AA = away goals against , AGD = away goal difference

12 # W = win , D = draw , L = loss , GF = goals for , GA = goals against , GD

= goal difference

13 table = data.frame(Team = teams , GP = 0, HW = 0, HD = 0, HL = 0, HF =

0, HA = 0, HGD = 0, AW = 0, AD = 0, AL = 0, AF = 0, AA = 0, AGD = 0,

136

W = 0, D = 0, L = 0, GF = 0, GA = 0, GD = 0, Points = 0)

14

15 for (i in 1:nrow(data)) {

16 # updating the goal tallys

17 # adding goals scored by home team

18 table[(which(teams == data[i,]$HomeTeam)), ’GF’] = table [(which(

teams == data[i,]$HomeTeam)), ’GF’] + data[i,]$FTHG

19 table[(which(teams == data[i,]$HomeTeam)), ’HF’] = table [(which(

teams == data[i,]$HomeTeam)), ’HF’] + data[i,]$FTHG

20 table[(which(teams == data[i,]$AwayTeam)), ’GA’] = table [(which(

teams == data[i,]$AwayTeam)), ’GA’] + data[i,]$FTHG

21 table[(which(teams == data[i,]$AwayTeam)), ’AA’] = table [(which(

teams == data[i,]$AwayTeam)), ’AA’] + data[i,]$FTHG

22 # adding goals scored by away team

23 table[(which(teams == data[i,]$AwayTeam)), ’GF’] = table [(which(

teams == data[i,]$AwayTeam)), ’GF’] + data[i,]$FTAG

24 table[(which(teams == data[i,]$AwayTeam)), ’AF’] = table [(which(

teams == data[i,]$AwayTeam)), ’AF’] + data[i,]$FTAG

25 table[(which(teams == data[i,]$HomeTeam)), ’GA’] = table [(which(

teams == data[i,]$HomeTeam)), ’GA’] + data[i,]$FTAG

26 table[(which(teams == data[i,]$HomeTeam)), ’HA’] = table [(which(

teams == data[i,]$HomeTeam)), ’HA’] + data[i,]$FTAG

27 # updating goal difference for home team

28 table[(which(teams == data[i,]$HomeTeam)), ’GD’] = table [(which(

teams == data[i,]$HomeTeam)), ’GF’] - table [(which(teams == data[i,]$

HomeTeam)), ’GA’]

29 table[(which(teams == data[i,]$HomeTeam)), ’HGD’] = table [(which(

teams == data[i,]$HomeTeam)), ’HF’] - table [(which(teams == data[i,]$

HomeTeam)), ’HA’]

30 # updating goal difference for away team

31 table[(which(teams == data[i,]$AwayTeam)), ’GD’] = table [(which(

teams == data[i,]$AwayTeam)), ’GF’] - table [(which(teams == data[i,]$

AwayTeam)), ’GA’]

32 table[(which(teams == data[i,]$AwayTeam)), ’AGD’] = table [(which(

teams == data[i,]$AwayTeam)), ’AF’] - table [(which(teams == data[i,]$

AwayTeam)), ’AA’]

33

34 # updating the point tallys and team records

35 if (data[i,]$FTHG > data[i,]$FTAG) {

36 # update points

37 table[(which(teams == data[i,]$HomeTeam)), ’Points ’] = table [(

which(teams == data[i,]$HomeTeam)), ’Points ’] + 3

38 # update win / losses

39 table[(which(teams == data[i,]$HomeTeam)), ’HW’] = table [(which(

teams == data[i,]$HomeTeam)), ’HW’] + 1

40 table[(which(teams == data[i,]$HomeTeam)), ’W’] = table [(which(

teams == data[i,]$HomeTeam)), ’W’] + 1

41 table[(which(teams == data[i,]$AwayTeam)), ’AL’] = table [(which(

137

teams == data[i,]$AwayTeam)), ’AL’] + 1

42 table[(which(teams == data[i,]$AwayTeam)), ’L’] = table [(which(

teams == data[i,]$AwayTeam)), ’L’] + 1

43 # update games played

44 table[(which(teams == data[i,]$HomeTeam)), ’GP’] = table [(which(

teams == data[i,]$HomeTeam)), ’GP’] + 1

45 table[(which(teams == data[i,]$AwayTeam)), ’GP’] = table [(which(

teams == data[i,]$AwayTeam)), ’GP’] + 1

46 } else if (data[i,]$FTHG == data[i,]$FTAG) {

47 # update points

48 table[(which(teams == data[i,]$HomeTeam)), ’Points ’] = table [(

which(teams == data[i,]$HomeTeam)), ’Points ’] + 1

49 table[(which(teams == data[i,]$AwayTeam)), ’Points ’] = table [(

which(teams == data[i,]$AwayTeam)), ’Points ’] + 1

50 # update draws

51 table[(which(teams == data[i,]$HomeTeam)), ’HD’] = table [(which(

teams == data[i,]$HomeTeam)), ’HD’] + 1

52 table[(which(teams == data[i,]$HomeTeam)), ’D’] = table [(which(

teams == data[i,]$HomeTeam)), ’D’] + 1

53 table[(which(teams == data[i,]$AwayTeam)), ’AD’] = table [(which(

teams == data[i,]$AwayTeam)), ’AD’] + 1

54 table[(which(teams == data[i,]$AwayTeam)), ’D’] = table [(which(

teams == data[i,]$AwayTeam)), ’D’] + 1

55 # update games played

56 table[(which(teams == data[i,]$HomeTeam)), ’GP’] = table [(which(

teams == data[i,]$HomeTeam)), ’GP’] + 1

57 table[(which(teams == data[i,]$AwayTeam)), ’GP’] = table [(which(

teams == data[i,]$AwayTeam)), ’GP’] + 1

58 } else if (data[i,]$FTHG < data[i,]$FTAG) {

59 # update points

60 table[(which(teams == data[i,]$AwayTeam)), ’Points ’] = table [(

which(teams == data[i,]$AwayTeam)), ’Points ’] + 3

61 # update draws

62 table[(which(teams == data[i,]$HomeTeam)), ’HL’] = table [(which(

teams == data[i,]$HomeTeam)), ’HL’] + 1

63 table[(which(teams == data[i,]$HomeTeam)), ’L’] = table [(which(

teams == data[i,]$HomeTeam)), ’L’] + 1

64 table[(which(teams == data[i,]$AwayTeam)), ’AW’] = table [(which(

teams == data[i,]$AwayTeam)), ’AW’] + 1

65 table[(which(teams == data[i,]$AwayTeam)), ’W’] = table [(which(

teams == data[i,]$AwayTeam)), ’W’] + 1

66 # update games played

67 table[(which(teams == data[i,]$HomeTeam)), ’GP’] = table [(which(

teams == data[i,]$HomeTeam)), ’GP’] + 1

68 table[(which(teams == data[i,]$AwayTeam)), ’GP’] = table [(which(

teams == data[i,]$AwayTeam)), ’GP’] + 1

69 }

70 }

138

71

72 # sorting the teams by total points and by goal difference

73 table = table[order(-table$Points , -table$GD) ,]

74

75 # returing table

76 return(table)

77 }

78

79 track_points_progress = function(data , results = T, start_values =

matrix(data = rep(0, length(as.character(sort(unique(c(as.vector(data

$HomeTeam), as.vector(data$AwayTeam))))))))) {

80 # function to obtain a data frame that tracks the number of points

that a team obtains over a period

81 # results is set to T by default - data passed must be a data frame of

results with team names and scores passed using column names FTHG (

home goals) and FTAG (away goals)

82 # if results if F, data passed must be a data frame of outcomes with

team names and the final result (HW = home win , D = draw , AW = away

win)

83 # start values are a vector of points that the team has before the

games have been played - by default is zero for each team

84

85 # getting the team names in alphabetical order

86 teams = as.character(sort(unique(c(as.vector(data$HomeTeam), as.vector

(data$AwayTeam)))))

87

88 # creating a data frame with each team as a column

89 # progress = setNames(data.frame(matrix(data = 0, ncol = length(teams)

, nrow = 1)),teams)

90 progress = matrix(data = start_values , ncol = 1, nrow = length(teams))

91 rownames(progress) = teams

92

93 # need to make a data frame to count how many games each team has

played , so we know at what position in the matrix we want to add the

new value of points

94 GP = setNames(data.frame(matrix(data = 0, ncol = length(teams), nrow =

1)),teams)

95

96 for (i in 1:nrow(data)) {

97 # updating the number of games played

98 GP[,(which(teams == data[i,]$HomeTeam))] = GP[,(which(teams == data[

i,]$HomeTeam))] + 1

99 GP[,(which(teams == data[i,]$AwayTeam))] = GP[,(which(teams == data[

i,]$AwayTeam))] + 1

100

101 # making sure that there is a row to add the next points tally for

the teams

102 if (!(ncol(progress) >= (GP[,(which(teams == data[i,]$HomeTeam))]+1)

139

)) {

103 progress = cbind(progress , matrix(data=0, ncol = 1, nrow = length(

teams)))

104 }

105 if (!(ncol(progress) >= (GP[,(which(teams == data[i,]$AwayTeam))]+1)

)) {

106 progress = cbind(progress , matrix(data=0, ncol = 1, nrow = length(

teams)))

107 }

108

109 # adding to the points tally and adding this value to the next

column in the matrix for the team

110 if (results == T) {

111 if (data[i,]$FTHG > data[i,]$FTAG) {

112 progress [(which(teams == data[i,]$HomeTeam)), (GP[,(which(teams

== data[i,]$HomeTeam))]+1)] = progress [(which(teams == data[i,]$

HomeTeam)),

113

(GP[,(which(teams == data[i,]$

HomeTeam))])] + 3

114 progress [(which(teams == data[i,]$AwayTeam)), (GP[,(which(teams

== data[i,]$AwayTeam))]+1)] = progress [(which(teams == data[i,]$

AwayTeam)),

115

(GP[,(which(teams == data[i,]$

AwayTeam))])]

116 } else if (data[i,]$FTHG == data[i,]$FTAG) {

117 progress [(which(teams == data[i,]$HomeTeam)), (GP[,(which(teams

== data[i,]$HomeTeam))]+1)] = progress [(which(teams == data[i,]$

HomeTeam)),

118

(GP[,(which(teams == data[i,]$

HomeTeam))])] + 1

119 progress [(which(teams == data[i,]$AwayTeam)), (GP[,(which(teams

== data[i,]$AwayTeam))]+1)] = progress [(which(teams == data[i,]$

AwayTeam)),

120

(GP[,(which(teams == data[i,]$

AwayTeam))])] + 1

121 } else if (data[i,]$FTHG < data[i,]$FTAG) {

122 progress [(which(teams == data[i,]$HomeTeam)), (GP[,(which(teams

== data[i,]$HomeTeam))]+1)] = progress [(which(teams == data[i,]$

HomeTeam)),

123

(GP[,(which(teams == data[i,]$

HomeTeam))])]

124 progress [(which(teams == data[i,]$AwayTeam)), (GP[,(which(teams

== data[i,]$AwayTeam))]+1)] = progress [(which(teams == data[i,]$

140

AwayTeam)),

125

(GP[,(which(teams == data[i,]$

AwayTeam))])] + 3

126 }

127 } else if (results == F) {

128 if (data[i,]$Result == ’HW’) {

129 progress [(which(teams == data[i,]$HomeTeam)), (GP[,(which(teams

== data[i,]$HomeTeam))]+1)] = progress [(which(teams == data[i,]$

HomeTeam)),

130

(GP[,(which(teams == data[i,]$

HomeTeam))])] + 3

131 progress [(which(teams == data[i,]$AwayTeam)), (GP[,(which(teams

== data[i,]$AwayTeam))]+1)] = progress [(which(teams == data[i,]$

AwayTeam)),

132

(GP[,(which(teams == data[i,]$

AwayTeam))])]

133 } else if (data[i,]$Result == ’D’) {

134 progress [(which(teams == data[i,]$HomeTeam)), (GP[,(which(teams

== data[i,]$HomeTeam))]+1)] = progress [(which(teams == data[i,]$

HomeTeam)),

135

(GP[,(which(teams == data[i,]$

HomeTeam))])] + 1

136 progress [(which(teams == data[i,]$AwayTeam)), (GP[,(which(teams

== data[i,]$AwayTeam))]+1)] = progress [(which(teams == data[i,]$

AwayTeam)),

137

(GP[,(which(teams == data[i,]$

AwayTeam))])] + 1

138 } else if (data[i,]$Result == ’AW’) {

139 progress [(which(teams == data[i,]$HomeTeam)), (GP[,(which(teams

== data[i,]$HomeTeam))]+1)] = progress [(which(teams == data[i,]$

HomeTeam)),

140

(GP[,(which(teams == data[i,]$

HomeTeam))])]

141 progress [(which(teams == data[i,]$AwayTeam)), (GP[,(which(teams

== data[i,]$AwayTeam))]+1)] = progress [(which(teams == data[i,]$

AwayTeam)),

142

(GP[,(which(teams == data[i,]$

AwayTeam))])] + 3

143 }

144 }

145 }

141

146

147 # return points progress matrix

148 return(progress)

149 }

150

151 predict_table = function(stan_file , data , model , minimum_games) {

152 # function to obtain a prediction of a league table after some games

153 # also returns a prediction for how the teams points progress during

the games in form of a matrix

154

155 # splitting the data set to games we want to always use as the

training set and the test set

156 total_number_of_games = nrow(data)

157 train_set = observed_games = data [1: minimum_games ,]

158 test_set = data[(minimum_games +1):nrow(data),]

159 data = data[(minimum_games +1):nrow(data),]

160

161 # getting the current points progress of train set

162 points_progress = track_points_progress(observed_games)

163

164 # need to predict scores for the rest of the data set

165 game_predictions = NULL

166

167 # set loop to carry on until there are still games to try and predict

168 while(!(nrow(train_set)==total_number_of_games)){

169 # to choose test set , we go through each game carry on until we find

a repeat in team

170 # get the games that we can use as our test set by going through

each game until we count a team twice

171 # if we add only 1 team or 0 teams , then we have found a repeating

team

172 teams = NULL; additions = 2; i=1

173 while (additions == 2) {

174 additions = 0

175 if (!(is.element(data[i,]$HomeIndex , teams))) {

176 teams = c(teams , data[i,]$HomeIndex)

177 additions = additions + 1

178 }

179 if (!(is.element(data[i,]$AwayIndex , teams))) {

180 teams = c(teams , data[i,]$AwayIndex)

181 additions = additions + 1

182 }

183 if (additions == 2) {

184 i = i + 1

185 }

186 }

187

188 # test_set now becomes the data frame with the games where no team

142

plays twice in

189 # re -label the data as the data minus the train_set games

190 test_set = data [1:i-1,]

191 data = data[i:nrow(data),]

192

193 # building Stan data object for the training data set

194 training_data = list(nteams = length(as.character(sort(unique(c(as.

vector(train_set$HomeTeam), as.vector(train_set$AwayTeam)))))),

195 ngames = nrow(train_set),

196 home_team = train_set$HomeIndex ,

197 away_team = train_set$AwayIndex ,

198 home_goals = train_set$FTHG ,

199 away_goals = train_set$FTAG)

200

201 # fitting a stan model to our training data set

202 train = fit_model(stan_file = stan_file , training_data , iterations =

20000 , chains = 4)

203

204 for (i in 1:nrow(test_set)) {

205 score = predict_game(model_fit = train ,

206 home_index = test_set[i,]$HomeIndex ,

207 away_index = test_set[i,]$AwayIndex ,

208 data = train_set ,

209 model = model ,

210 scores = T)

211

212 # record the score prediction in the data frame predictions - need

to round the mean and rename the columns to FTHG and FTAG

213 game = data.frame(’Date’ = test_set[i,]$Date ,

214 ’HomeTeam ’ = test_set[i,]$HomeTeam ,

215 ’AwayTeam ’ = test_set[i,]$AwayTeam ,

216 ’FTHG’ = getmode(score$FTHG),

217 ’FTAG’ = getmode(score$FTAG),

218 ’B365H’ = test_set[i,]$B365H ,

219 ’B365D’ = test_set[i,]$B365D ,

220 ’B365A’ = test_set[i,]$B365A ,

221 ’HomeIndex ’ = test_set[i,]$HomeIndex ,

222 ’AwayIndex ’ = test_set[i,]$AwayIndex)

223

224 # combinine this with predictions

225 game_predictions = rbind(game_predictions , game)

226 }

227

228 # print progress of the algorithm

229 print(paste(’There are ’, nrow(data), ’ games left in the data set’)

)

230

231 # train_set now becomes all the data and games that have happened

143

before the test_set games

232 train_set = rbind(train_set , data [1:i-1,])

233 }

234

235 # create table with the new predicted outcomes

236 predicted_outcomes = rbind(observed_games , game_predictions)

237 predicted_table = get_table(predicted_outcomes)

238

239 # obtain complete predicted progress for the whole data set

240 predicted_progress = track_points_progress(data = game_predictions ,

start_values = points_progress[,ncol(points_progress)])

241 overall_progress = cbind(points_progress [,1:(ncol(points_progress) -1)

], predicted_progress)

242

243 # return in list form

244 predictions = list(’predicted_progress ’ = overall_progress , ’predicted

_table ’ = predicted_table)

245 return(predictions)

246 }

247

248 ### Calculate the actual observed table from 2016/17 season

249

250 get_table(E0_2016)

251

252 ### Predict league table from BB model

253

254 progression_bb = predict_table(’sum_to_zero.stan’, data = E0_2016, model

= ’BB’, minimum_games = 10)

255

256 # Printing predicted league table from BB model

257 progression_bb$predicted_table

258

259 # Printing predicted progress from BB model

260 progression_bb$predicted_progress

261

262 ### Predict league table from NB model

263

264 progression_nb = predict_table(’model_nb.stan’, data = E0_2016, model =

’NB’, minimum_games = 10)

265

266 # Printing predicted league table from NB model

267 progression_nb$predicted_table

268

269 # Printing predicted progress from NB model

270 progression_nb$predicted_progress

271

272 ### Figure 21

273

144

274 # Calculate the actual observed points progress over the 380 games of

2016/17 season

275 actual_progress = track_points_progress(E0_2016)

276

277 # Printing plot of points progression for each team

278

279 for (team in rownames(actual_progress)) {

280 plot(actual_progress[team ,], col=’black’, ylim=c(0,max(c(actual_

progress[team ,], progression_bb$predicted_progress[team ,],

progression_nb$predicted_progress[team ,]) +5)), xlab=’Game Week’, ylab

=’Number of points ’, main=team , pch=’.’)

281 lines (1:39 , actual_progress[team ,], col=’black ’, pch=’.’, lwd =1.5)

282

283 points(progression_bb$predicted_progress[team ,], col=’blue’, pch=’.’)

284 lines (1:39 , progression_bb$predicted_progress[team ,], col=’blue’, lwd

=1.5)

285

286 points(progression_nb$predicted_progress[team ,], col=’red’, pch=’.’)

287 lines (1:39 , progression_nb$predicted_progress[team ,], col=’red’, lwd

=1.5)

288

289 legend(’topleft ’, max(c(actual_progress[team ,], progression_bb$

predicted_progress[team ,], progression_nb$predicted_progress[team ,],

progression_nbb$predicted_progress[team ,])), legend = c(’Observed

points ’, ’Baio & Blangiardo Poisson Model’, ’Negative Binomial ’),

fill = c(’black’, ’red’, ’blue’))

290 }

145

K League Tables: Observed and Predicted

GP = ‘Games Played’

HW = ‘Home Wins’

HD = ‘Home Draws’

HL = ‘Home Losses’

HF = ‘Home-goals For’

HA = ‘Home-goals Against’

HGD = ‘Home Goal Difference’

AW = ‘Away Wins’

AD = ‘Away Draws’

AL = ‘Away Losses’

AF = ‘Away-goals For’

AA = ‘Away-goals Against’

W = ‘Wins (Total)’

D = ‘Draws (Total)’

L = ‘Losses (Total)’ GF = ‘Goals For (Total)’

GA = ‘Goals Against (Total)’

GD = ‘Goal Difference (Total)’

K.1 Observed League Table (2016/17)

Team GP HW HD HL HF HA HGD AW AD AL AF AA AGD W D L GF GA GD Points

1 Chelsea 38 17 0 2 55 17 38 13 3 3 30 16 14 30 3 5 85 33 52 93

2 Tottenham 38 17 2 0 47 9 38 9 6 4 39 17 22 26 8 4 86 26 60 86

3 Man City 38 11 7 1 37 17 20 12 2 5 43 22 21 23 9 6 80 39 41 78

4 Liverpool 38 12 5 2 45 18 27 10 5 4 33 24 9 22 10 6 78 42 36 76

5 Arsenal 38 14 3 2 39 16 23 9 3 7 38 28 10 23 6 9 77 44 33 75

6 Man United 38 8 10 1 26 12 14 10 5 4 28 17 11 18 15 5 54 29 25 69

7 Everton 38 13 4 2 42 16 26 4 6 9 20 28 -8 17 10 11 62 44 18 61

8 Southampton 38 6 6 7 17 21 -4 6 4 9 24 27 -3 12 10 16 41 48 -7 46

9 Bournemouth 38 9 4 6 35 29 6 3 6 10 20 38 -18 12 10 16 55 67 -12 46

10 West Brom 38 9 2 8 27 22 5 3 7 9 16 29 -13 12 9 17 43 51 -8 45

11 West Ham 38 7 4 8 19 31 -12 5 5 9 28 33 -5 12 9 17 47 64 -17 45

12 Leicester 38 10 4 5 31 25 6 2 4 13 17 38 -21 12 8 18 48 63 -15 44

13 Stoke 38 7 6 6 24 24 0 4 5 10 17 32 -15 11 11 16 41 56 -15 44

14 Crystal Palace 38 6 2 11 24 25 -1 6 3 10 26 38 -12 12 5 21 50 63 -13 41

15 Swansea 38 8 3 8 27 34 -7 4 2 13 18 36 -18 12 5 21 45 70 -25 41

16 Burnley 38 10 3 6 26 20 6 1 4 14 13 35 -22 11 7 20 39 55 -16 40

17 Watford 38 8 4 7 25 29 -4 3 3 13 15 39 -24 11 7 20 40 68 -28 40

18 Hull 38 8 4 7 28 35 -7 1 3 15 9 45 -36 9 7 22 37 80 -43 34

19 Middlesbrough 38 4 6 9 17 23 -6 1 7 11 10 30 -20 5 13 20 27 53 -26 28

20 Sunderland 38 3 5 11 16 34 -18 3 1 15 13 35 -22 6 6 26 29 69 -40 24

146

K.2 Predicted League Table using Baio & Blangiardo’s model

(2010)

Team GP HW HD HL HF HA HGD AW AD AL AF AA AGD W D L GF GA GD Points

1 Chelsea 38 18 1 0 30 2 28 9 7 3 16 10 6 27 8 3 46 12 34 89

2 Tottenham 38 17 2 0 25 1 24 10 5 4 16 9 7 27 7 4 41 10 31 88

3 Arsenal 38 16 2 1 31 6 25 5 12 2 19 17 2 21 14 3 50 23 27 77

4 Man City 38 15 4 0 27 5 22 5 13 1 18 14 4 20 17 1 45 19 26 77

5 Man United 38 16 3 0 20 3 17 5 8 6 13 13 0 21 11 6 33 16 17 74

6 Everton 38 14 5 0 24 5 19 4 10 5 13 14 -1 18 15 5 37 19 18 69

7 Liverpool 38 13 6 0 31 6 25 2 15 2 20 20 0 15 21 2 51 26 25 66

8 West Brom 38 13 4 2 18 5 13 1 6 12 5 16 -11 14 10 14 23 21 2 52

9 Southampton 38 11 7 1 16 6 10 1 5 13 5 18 -13 12 12 14 21 24 -3 48

10 Stoke 38 11 5 3 16 8 8 1 5 13 6 23 -17 12 10 16 22 31 -9 46

11 Crystal Palace 38 8 9 2 18 11 7 0 9 10 8 22 -14 8 18 12 26 33 -7 42

12 Watford 38 8 8 3 16 11 5 1 6 12 7 24 -17 9 14 15 23 35 -12 41

13 Middlesbrough 38 7 8 4 10 7 3 2 3 14 2 16 -14 9 11 18 12 23 -11 38

14 Leicester 38 9 6 4 14 9 5 0 5 14 6 23 -17 9 11 18 20 32 -12 38

15 Bournemouth 38 5 12 2 18 16 2 0 7 12 5 22 -17 5 19 14 23 38 -15 34

16 Burnley 38 8 6 5 12 9 3 0 4 15 3 21 -18 8 10 20 15 30 -15 34

17 Hull 38 3 13 3 17 18 -1 1 1 17 1 24 -23 4 14 20 18 42 -24 26

18 Swansea 38 2 13 4 16 18 -2 1 3 15 6 29 -23 3 16 19 22 47 -25 25

19 Sunderland 38 4 9 6 13 15 -2 0 2 17 3 24 -21 4 11 23 16 39 -23 23

20 West Ham 38 3 8 8 12 17 -5 0 5 14 6 25 -19 3 13 22 18 42 -24 22

K.3 Predicted League Table using Negative Binomial model

Team GP HW HD HL HF HA HGD AW AD AL AF AA AGD W D L GF GA GD Points

1 Chelsea 38 15 4 0 20 3 17 12 6 1 12 1 11 27 10 1 32 4 28 91

2 Tottenham 38 13 6 0 15 1 14 13 6 0 16 2 14 26 12 0 31 3 28 90

3 Man City 38 11 4 4 14 7 7 15 4 0 20 3 17 26 8 4 34 10 24 86

4 Liverpool 38 12 6 1 17 5 12 13 3 3 19 9 10 25 9 4 36 14 22 84

5 Arsenal 38 11 5 3 17 9 8 13 6 0 18 4 14 24 11 3 35 13 22 83

6 Man United 38 9 7 3 9 3 6 15 2 2 17 3 14 24 9 5 26 6 20 81

7 Everton 38 8 7 4 10 5 5 6 9 4 7 5 2 14 16 8 17 10 7 58

8 West Brom 38 9 5 5 11 7 4 5 11 3 5 3 2 14 16 8 16 10 6 58

9 Crystal Palace 38 5 7 7 6 8 -2 3 13 3 12 12 0 8 20 10 18 20 -2 44

10 Southampton 38 1 11 7 2 8 -6 7 8 4 7 4 3 8 19 11 9 12 -3 43

11 Bournemouth 38 6 9 4 11 10 1 2 7 10 4 14 -10 8 16 14 15 24 -9 40

12 West Ham 38 1 6 12 2 14 -12 8 2 9 11 12 -1 9 8 21 13 26 -13 35

13 Leicester 38 7 7 5 7 5 2 0 4 15 2 18 -16 7 11 20 9 23 -14 32

14 Middlesbrough 38 1 11 7 2 8 -6 1 14 4 1 4 -3 2 25 11 3 12 -9 31

15 Swansea 38 2 7 10 4 13 -9 4 5 10 6 12 -6 6 12 20 10 25 -15 30

16 Watford 38 3 9 7 7 12 -5 2 6 11 3 13 -10 5 15 18 10 25 -15 30

17 Burnley 38 5 9 5 5 5 0 0 5 14 0 14 -14 5 14 19 5 19 -14 29

18 Stoke 38 3 4 12 3 12 -9 2 7 10 3 11 -8 5 11 22 6 23 -17 26

19 Sunderland 38 1 4 14 2 15 -13 1 10 8 2 10 -8 2 14 22 4 25 -21 20

20 Hull 38 2 5 12 5 16 -11 0 5 14 1 15 -14 2 10 26 6 31 -25 16

147

