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We congratulate the authors for a stimulating and interesting paper which introduces a

new class of algorithms that differs from traditional Markov chain Monte Carlo (MCMC)

methods, in that the approach is based on the quasi-stationary distribution of an ap-

propriately constructed diffusion process. A particularly impressive contribution of the

proposed method is that it can be applied in big data contexts whilst remaining exact by

adopting a sub-sampling approach. Interestingly, the ScaLE algorithm has connections

to another method for tackling large data in the Bayesian framework, namely the Monte

Carlo Fusion algorithm proposed by Dai et al. [2019]. In particular, both algorithms

utilise methodology for the exact simulation of diffusions (Beskos et al. [2006], Beskos

et al. [2008]) and use the Langevin diffusion in their mathematical construction (although

it is not explicitly used in ScaLE). Further, the Monte Carlo Fusion algorithm uses the

function φ : Rd → R (defined in Section 2). However, the use of subsampling ideas were

not explored in [Dai et al., 2019]. The unbiased estimators for φ outlined in Section 4 in

this paper is a contribution which might be employed in the Monte Carlo Fusion algo-

rithm.

Divide-and-conquer methods (for instance, Scott et al. [2016], Wang and Dunson

[2013], Neiswanger et al. [2013], Dai et al. [2019]) have been proposed in order to adapt

MCMC for reducing the computational cost of the algorithm. In these approaches, the

data set is split into disjoint subsets and then standard MCMC methods are used for each

subset. Inference is then combined into a single inference. In this framework, the target

is of the form

f(x) ∝
C∏
c=1

fc(x) (1)

where each sub-posterior fc(x) is a density (up to multiplicative constant) representing

one of the C distributed inferences we wish to unify.

As noted in the introduction of the paper, the primary weakness of these methods thus

far is that the recombination of the separately conducted inferences is inexact and involves

some approximation of the sub-posteriors. However, the Monte Carlo Fusion algorithm is

exact and is the first exact fusion inference method that allows for perfect sampling from

(1). This is achieved by constructing a rejection sampling scheme on an extended space
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with the main difficulty being computing an intractable acceptance probability which

requires the auxiliary simulation of collections of Brownian bridges. An advantage of the

fusion approach is that it can be conducted in a distributed setting and one can exploit

large clusters of computing cores. In contrast, the QSMC algorithm detailed in this paper

and more traditional MCMC methods are single core algorithms. It would be interesting

to see if the authors have any ideas for parallel implementations of ScaLE in the future.
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