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Generalised Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:
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Uses importance sampling on the extended target distribution:
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Let p. (y | a:(c)) be a transition density of a stochastic process with
stationary distribution f*(x), then (2) admits 7 as a marginal for

Y.
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Proposal distribution:
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and A, is the preconditioning matrix associated to sub-posterior
folx) forc=1,...,C.

If p. transition probability of a d-dimensional double Langevin dif-
fusion process, then under certain mild conditions,
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where pg and p; are two un-normalised weights.
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Why use a preconditioning matrix?

Let @ o fifo, where f. ~ N5(0,Y) and X = (;O ’OfOO”)
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Figure 1. The effect on ESS with varying correlation

Divide-and-Conquer Monte Carlo Fusion

Problem: Fusion becomes inefficient as the number of sub-posteriors in-

Algorithm 1 Generalised Monte Carlo Fusion

1. Initialise a value for T" > 0

2. Simulate a proposal y from h:
a) Forc=1,...,C, simulate 'Y ~ f.(x) and calculate &
b) Simulate y ~ Ny(x, TA)

3. Assign unnormalised weight w' (w(l‘c)

Y)

creases.
Figure 2: The ‘fork-and-join’ approach
However, we can adopt a divide-and-conquer  approach:

Figure 3: The balanced approach Figure 4: The sequential approach
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Toy Example
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o Sub-posteriors: f.(z) x e T forc=1,...,4
o N = 20,000
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Figure 5: Run-times of MC fusion for f. oc e 2 forc=1,...,C for varying C

Logistic regression example

e Logistic regression model with credit card data to predict default
on loans

on = 50,000, d =5

e [o compare methods, use integrated absolute distance:

flx;) — fla;)|dz; € [0,1]

where f(x;) is baseline marginal density (obtained using NUTS
with Stan)
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Figure 6: Integrated absolute distance for different number of sub-posteriors for
different methods for unifying distributed analyses
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