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Generalised Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:

π(x) ∝ f1(x) · · · fC(x) =

C∏
c=1

fc(x) (1)

Uses importance sampling on the extended target distribution:
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Let pc
(
y | x(c)

)
be a transition density of a stochastic process with

stationary distribution f 2
c (x), then (2) admits π as a marginal for

y.

Proposal distribution:
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Λ−1 =
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Λ−1
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and Λc is the preconditioning matrix associated to sub-posterior
fc(x) for c = 1, . . . , C.
If pc transition probability of a d-dimensional double Langevin dif-
fusion process, then under certain mild conditions,
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where ρ0 and ρ1 are two un-normalised weights.

Algorithm 1 Generalised Monte Carlo Fusion

1. Initialise a value for T > 0

2. Simulate a proposal y from h:
a) For c = 1, . . . , C, simulate x(c) ∼ fc(x) and calculate x̃

b) Simulate y ∼ Nd(x̃, TΛ)

3. Assign unnormalised weight w′
(
x(1:C),y

)

Why use a preconditioning matrix?

Let π ∝ f1f2, where fc ∼ N2(0,Σ) and Σ =

(
1.0 ρcorr

ρcorr 1.0

)
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Figure 1: The effect on ESS with varying correlation

Divide-and-Conquer Monte Carlo Fusion

Problem: Fusion becomes inefficient as the number of sub-posteriors in-
creases.

Figure 2: The ‘fork-and-join’ approach

However, we can adopt a divide-and-conquer approach:

Figure 3: The balanced approach Figure 4: The sequential approach

Toy Example

• Target: π(x) ∝ e−
x4

2

• Sub-posteriors: fc(x) ∝ e−
x4

8 for c = 1, . . . , 4

•N = 20, 000

Figure 5: Run-times of MC fusion for fc ∝ e−
x4

2C for c = 1, . . . , C for varying C

Logistic regression example

• Logistic regression model with credit card data to predict default
on loans

•n = 50, 000, d = 5

• To compare methods, use integrated absolute distance:

IAD =
1

2d

d∑
j=1

∫ ∣∣∣f̂ (xj)− f (xj)
∣∣∣dxj ∈ [0, 1]

where f̂ (xj) is baseline marginal density (obtained using NUTS
with Stan)

Figure 6: Integrated absolute distance for different number of sub-posteriors for
different methods for unifying distributed analyses
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