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Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:
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Uses rejection sampling on the extended target distribution:
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Let p.(y | £'“)) is the transition density of a stochastic process with stationary
distribution f(x), then (2) admits 7 as a marginal for y.

Proposal distribution:
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Considering the transition probability of a d-dimensional double Langevin dif-
fusion process, Dai et al. (2019) showed that under certain mild conditions,
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where p and () are two probability values, defined as
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where W denotes the law of C' Brownian bridges with méc) = z!° and

a:<TC> =1y in [0, 7.

Time-adapting Monte Carlo Fusion
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Figure 5: Comparison between regular fusion and time-adapting fusion

Tempering for Monte Carlo Fusion

Problem: Fusion is inefficient when the sub-posteriors conflict.

Algorithm 1 Monte Carlo Fusion (Dai et al. 2019)

1. Initialise a value for T' > 0
2. Simulate a proposal y from h:
a) Forc=1,...,C, simulate . ~ f.(x) and calculate @
- _TT
b) Simulate y ~ Ny(z, )
3. Accept y as a sample from (1) with probability p - )

Problem: Fusion becomes inefficient as the number of sub-posteriors increases.
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Figure42: Run-times of MC fusion for

Figure 1: The ‘fork-and-join’ h w
igure € Tork-ahd-join approac f.oce wforc=1,...,C for varying C

Hierarchical and Sequential Monte Carlo Fusion

Figure 3: The hierarchical approach

Figure 4: The sequential approach
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Figure 6: Run-times of MC fusion for f; ~ N (0,1) and f5 ~ N (u, 1) for different i

Let f’(x) be the power-tempered sub-posterior, for 3 € (0, 1], then
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Example. Target m(z) o< fifo, where fi ~ N (=8,1) and f5 ~ N(2,0.5).

1. Use Monte Carlo fusion to obtain samples for 7 flﬂff with 3 = &
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Figure 7: Kernel density fitting based on 10, 000 realisations for density proportional to flﬁfzﬁ
(blue) and the true density curves for f!’ (pink) and f. (orange)

2. Use hierarchical or sequential Monte Carlo fusion and samples for 7 to
obtain samples for ™ o< f; f5
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Figure 9: Kernel density fitting for 7"
(sequential Monte Carlo fusion)

Figure 8: Kernel density fitting for 7"
(hierarchical Monte Carlo fusion)
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Figure 10: Kernel density fitting based on 10, 000 realisations for density proportional to m
based on hierarchical fusion (red dashed), sequential fusion (green dotted), and the true
density curves for f; (pink) and f; (orange)



