Hierarchical and Sequential Monte Carlo Fusion A method of unifying distributed analyses Ryan Chan ^{1,3}, Murray Pollock ^{1,3}, Gareth Roberts ^{1,3}, Petros Dellaportas ^{2,3}

 1 University of Warwick, 2 University College London, 3 The Alan Turing Institute

Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:

$$\pi(\boldsymbol{x}) \propto f_1(\boldsymbol{x}) \cdots f_C(\boldsymbol{x}) = \prod_{c=1}^C f_c(\boldsymbol{x})$$
 (1)

Uses rejection sampling on the extended target distribution:

$$g(\boldsymbol{x}^{(1:C)}, \boldsymbol{y}) \propto \prod_{c=1}^{C} \left[f_c^2(\boldsymbol{x}^{(c)}) p_c(\boldsymbol{y} \mid \boldsymbol{x}^{(c)}) \cdot \frac{1}{f_c(\boldsymbol{y})} \right]$$
(2)

Let $p_c(\boldsymbol{y} \mid \boldsymbol{x}^{(c)})$ is the transition density of a stochastic process with stationary

Time-adapting Monte Carlo Fusion

distribution $f_c^2(\boldsymbol{x})$, then (2) admits π as a marginal for \boldsymbol{y} .

Proposal distribution:

$$h(\boldsymbol{x}^{(1:C)}, \boldsymbol{y}) \propto \prod_{c=1}^{C} \left[f_c(\boldsymbol{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\boldsymbol{y} - \bar{\boldsymbol{x}}\|^2}{2T} \right)$$
(3)

Considering the transition probability of a d-dimensional double Langevin diffusion process, Dai et al. (2019) showed that under certain mild conditions,

$$\frac{g(\boldsymbol{x}^{(1:C)}, \boldsymbol{y})}{h(\boldsymbol{x}^{(1:C)}, \boldsymbol{y})} \propto \rho \cdot Q$$
(4)

where ρ and Q are two probability values, defined as

$$\rho \coloneqq e^{-\frac{C\sigma^2}{2T}}, \qquad \sigma^2 = C^{-1} \sum_{c=1}^C \left\| \boldsymbol{x}^{(c)} - \bar{\boldsymbol{x}} \right\|^2$$
(5)
$$Q \coloneqq \mathbb{E}_{\bar{\mathbb{W}}} \left(\prod_{c=1}^C \left[\exp\left\{ -\int_0^T \left(\phi_c(\boldsymbol{x}_t^{(c)}) - \Phi_c \right) \mathrm{d}t \right\} \right] \right)$$
(6)

where \overline{W} denotes the law of C Brownian bridges with $\boldsymbol{x}_{0}^{(c)} = \boldsymbol{x}^{(c)}$ and $\boldsymbol{x}_{T}^{(c)} = \boldsymbol{y}$ in [0, T].

Figure 5: Comparison between regular fusion and time-adapting fusion

Tempering for Monte Carlo Fusion

<u>Problem</u>: Fusion is inefficient when the sub-posteriors conflict.

Figure 6: Run-times of MC fusion for $f_1 \sim \mathcal{N}(0, 1)$ and $f_2 \sim \mathcal{N}(\mu, 1)$ for different μ Let $f_c^{\beta}(\boldsymbol{x})$ be the *power-tempered sub-posterior*, for $\beta \in (0, 1]$, then $\pi(\boldsymbol{x}) \propto \prod_{i=1}^{\frac{1}{\beta}} \left[\prod_{c=1}^{C} f_c^{\beta}(\boldsymbol{x})\right] \quad \text{where } \frac{1}{\beta} \in \mathbb{N}$ (7)

Example. Target $\pi(x) \propto f_1 f_2$, where $f_1 \sim \mathcal{N}(-8, 1)$ and $f_2 \sim \mathcal{N}(2, 0.5)$. 1. Use Monte Carlo fusion to obtain samples for $\pi^\beta \propto f_1^\beta f_2^\beta$ with $\beta = \frac{1}{8}$:

Algorithm 1 Monte Carlo Fusion (Dai et al. 2019)

- 1. Initialise a value for T > 0
- 2. Simulate a proposal \boldsymbol{y} from h:
 - a) For c = 1, ..., C, simulate $\boldsymbol{x}_c \sim f_c(\boldsymbol{x})$ and calculate $\bar{\boldsymbol{x}}$ b) Simulate $\boldsymbol{y} \sim \mathcal{N}_d(\bar{\boldsymbol{x}}, \frac{T\mathbb{I}_d}{C})$
- 3. Accept $oldsymbol{y}$ as a sample from (1) with probability $ho \cdot Q$

<u>Problem</u>: Fusion becomes inefficient as the number of sub-posteriors increases.

Figure 1: The 'fork-and-join' approach

 $f_c \propto e^{-\frac{x^2}{2C}}$ for $c = 1, \ldots, C$ for varying C

- Figure 7: Kernel density fitting based on 10,000 realisations for density proportional to $f_1^{\beta}f_2^{\beta}$ (blue) and the true density curves for f_1^{β} (pink) and f_2^{β} (orange)
- 2. Use hierarchical or sequential Monte Carlo fusion and samples for π^{β} to obtain samples for $\pi \propto f_1 f_2$

Hierarchical and Sequential Monte Carlo Fusion

Figure 3: The hierarchical approach Figure 4: The sequential approach **Acknowledgements:** RC is funded by The Alan Turing Institute Doctoral Studentship, under the EPSRC grant EP/N510129/1. Figure 8: Kernel density fitting for π^{β} (hierarchical Monte Carlo fusion)

Figure 9: Kernel density fitting for π^{β} (sequential Monte Carlo fusion)

Figure 10: Kernel density fitting based on 10,000 realisations for density proportional to π based on hierarchical fusion (red dashed), sequential fusion (green dotted), and the true density curves for f_1 (pink) and f_2 (orange)