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Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:

π(x) ∝ f1(x) · · · fC(x) =

C∏
c=1

fc(x) (1)

Uses rejection sampling on the extended target distribution:

g(x(1:C),y) ∝
C∏
c=1

[
f 2
c (x(c))pc(y | x(c)) · 1

fc(y)

]
(2)

Let pc(y |x(c)) is the transition density of a stochastic process with stationary
distribution f 2

c (x), then (2) admits π as a marginal for y.

Proposal distribution:

h(x(1:C),y) ∝
C∏
c=1

[
fc

(
x(c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)
(3)

Considering the transition probability of a d-dimensional double Langevin dif-
fusion process, Dai et al. (2019) showed that under certain mild conditions,

g(x(1:C),y)

h(x(1:C),y)
∝ ρ ·Q (4)

where ρ and Q are two probability values, defined as

ρ := e−
Cσ2

2T , σ2 = C−1
C∑
c=1

∥∥∥x(c) − x̄
∥∥∥2

(5)

Q := EW̄

( C∏
c=1

[
exp

{
−
∫ T

0

(
φc(x

(c)
t )− Φc

)
dt

}])
(6)

where W̄ denotes the law of C Brownian bridges with x
(c)
0 = x(c) and

x
(c)
T = y in [0, T ].

Algorithm 1 Monte Carlo Fusion (Dai et al. 2019)

1. Initialise a value for T > 0

2. Simulate a proposal y from h:
a) For c = 1, . . . , C, simulate xc ∼ fc(x) and calculate x̄

b) Simulate y ∼ Nd(x̄,
T Id
C )

3. Accept y as a sample from (1) with probability ρ ·Q

Problem: Fusion becomes inefficient as the number of sub-posteriors increases.

Figure 1: The ‘fork-and-join’ approach
Figure 2: Run-times of MC fusion for

fc ∝ e−
x4

2C for c = 1, . . . , C for varying C

Hierarchical and Sequential Monte Carlo Fusion

Figure 3: The hierarchical approach Figure 4: The sequential approach
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Time-adapting Monte Carlo Fusion

Figure 5: Comparison between regular fusion and time-adapting fusion

Tempering for Monte Carlo Fusion

Problem: Fusion is inefficient when the sub-posteriors conflict.

Figure 6: Run-times of MC fusion for f1 ∼ N (0, 1) and f2 ∼ N (µ, 1) for different µ

Let fβc (x) be the power-tempered sub-posterior, for β ∈ (0, 1], then

π(x) ∝

1
β∏
i=1

[
C∏
c=1

fβc (x)

]
where

1

β
∈ N (7)

Example. Target π(x) ∝ f1f2, where f1 ∼ N (−8, 1) and f2 ∼ N (2, 0.5).

1. Use Monte Carlo fusion to obtain samples for πβ ∝ fβ1 f
β
2 with β = 1

8:

Figure 7: Kernel density fitting based on 10, 000 realisations for density proportional to fβ1 f
β
2

(blue) and the true density curves for fβ1 (pink) and fβ2 (orange)

2. Use hierarchical or sequential Monte Carlo fusion and samples for πβ to
obtain samples for π ∝ f1f2

Figure 8: Kernel density fitting for πβ

(hierarchical Monte Carlo fusion)
Figure 9: Kernel density fitting for πβ

(sequential Monte Carlo fusion)

Figure 10: Kernel density fitting based on 10, 000 realisations for density proportional to π
based on hierarchical fusion (red dashed), sequential fusion (green dotted), and the true

density curves for f1 (pink) and f2 (orange)


