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Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:

π(x) ∝ f1(x) · · · fC(x) =

C∏
c=1

fc(x) (1)

Uses rejection sampling on the extended target distribution:

g(x(1:C),y) ∝
C∏
c=1

[
f 2
c (x(c))pc(y | x(c)) · 1

fc(y)

]
(2)

Let pc(y |x(c)) be the transition density of a stochastic process with stationary
distribution f 2

c (x), then (??) admits π as a marginal for y.

Proposal distribution:

h(x(1:C),y) ∝
C∏
c=1

[
fc

(
x(c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)
(3)

Dai et al. (2019) showed that under certain mild conditions,

g(x(1:C),y)

h(x(1:C),y)
∝ ρ ·Q (4)

Algorithm 1 Monte Carlo Fusion (Dai et al. 2019)

1. Initialise a value for T > 0

2. Simulate a proposal y from h:
a) For c = 1, . . . , C, simulate xc ∼ fc(x) and calculate x̄

b) Simulate y ∼ Nd(x̄,
T Id
C )

3. Accept y as a sample from (??) with probability ρ ·Q

Example 1. Target π(x) ∝ e−
x4

2 and fc(x) ∝ e−
x4

2C for c = 1, . . . , C and
C = 4.

Figure 1: Kernel density fitting based on 10,000 realisations for density proportional to e−
x4

2 ,
based on different Monte Carlo methods - 1. black (standard rejection sampling), 2. red

(Monte Carlo fusion), 3. grey (basic Consensus Monte Carlo (Scott et al. 2016))

Problem: Fusion becomes inefficient as the number of sub-posteriors increases.

Figure 2: Run-times of standard MC
fusion for Example 1 for varying C

Figure 3: The ‘fork-and-join’ approach
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Hierarchical and Sequential Monte Carlo Fusion

Figure 4: The hierarchical approach Figure 5: The sequential approach

Tempering for Monte Carlo Fusion

The power-tempered target distribution: πβ(x) ∝ [π(x)]β, for β ∈ (0, 1]

π(x) = π(x)
1
β ·β =

1
β∏
i=1

πβ(x) if
1

β
∈ Z (5)

Useful to consider when:

• sampling from multi-modal densities (let fc = πβ(x) for c = 1, . . . , 1
β)

• sub-posteriors conflict / have little overlapping support

Example 2. Target π(x) ∝ f1f2, where f1 ∼ N (−8, 1) and f2 ∼ N (2, 0.5).
Problem: Lack of overlapping support between f1 and f2 - fusion is inefficient.
Solution: Perform fusion on fβ1 and fβ2 to obtain samples for πβ and then use
hierarchical or sequential Monte Carlo fusion to get samples for π.

1. Use Monte Carlo fusion to obtain samples for πβ ∝ fβ1 f
β
2 with β = 1

8:

Figure 6: Kernel density fitting based on 10, 000 realisations for density proportional to fβ1 f
β
2

(blue) and the true density curves for fβ1 (pink) and fβ2 (orange) in Example 2

2. Use hierarchical or sequential Monte Carlo fusion and samples for πβ to
obtain samples for π ∝ f1f2

Figure 7: Kernel density fitting for πβ

(hierarchical Monte Carlo fusion)
Figure 8: Kernel density fitting for πβ

(sequential Monte Carlo fusion)

Figure 9: Kernel density fitting based on 10, 000 realisations for density proportional to π
based on hierarchical fusion (red dashed), sequential fusion (green dotted), and the true

density curves for f1 (pink) and f2 (orange) in Example 2


