Hierarchical and Sequential Monte Carlo Fusion The

A method of unifying distributed analyses
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Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:
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Uses rejection sampling on the extended target distribution:
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Let p.(y | 2'?)) be the transition density of a stochastic process with stationary
distribution f(x), then (??) admits 7 as a marginal for y.

Proposal distribution:
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Dai et al. (2019) showed that under certain mild conditions,
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Algorithm 1 Monte Carlo Fusion (Dai et al. 2019)

1. Initialise a value for T > 0
2. Simulate a proposal y from h:

a) Forc=1,...,C, simulate . ~ f.(x) and calculate @
b) Simulate y ~ Ny(x, )

3. Accept y as a sample from (?7?) with probability p - )
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Example 1. Target m(z) < e™7 and f.(z) oxc e @ for c = 1,...,C and
C =4.
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Figure 1: Kernel density fitting based on 10,000 realisations for density proportional to e~ 2,
based on different Monte Carlo methods - 1. black (standard rejection sampling), 2. red
(Monte Carlo fusion), 3. grey (basic Consensus Monte Carlo (Scott et al. 2016))

Problem: Fusion becomes inefficient as the number of sub-posteriors increases.
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Figure 2: Run-times of standard MC
fusion for Example 1 for varying C

Figure 3: The ‘fork-and-join" approach
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Hierarchical and Sequential Monte Carlo Fusion

Figure 4: The hierarchical approach

Figure 5: The sequential approach

Tempering for Monte Carlo Fusion

The power-tempered target distribution: ms(x) o [w(x)]”, for 8 € (0,1]
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Useful to consider when:
e sampling from multi-modal densities (let f. = mg(x) forc=1,... ,%)

e sub-posteriors conflict / have little overlapping support

Example 2. Target 7(x) o< fifo, where fi ~ N(—=8,1) and f> ~ N(2,0.5).
Problem: Lack of overlapping support between f; and f5 - fusion is inefficient.

Solution: Perform fusion on flﬁ and ff to obtain samples for 7” and then use

hierarchical or sequential Monte Carlo fusion to get samples for .

1. Use Monte Carlo fusion to obtain samples for 7 flﬂfzﬁ with 5 = %:
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Figure 6: Kernel density fitting based on 10, 000 realisations for density proportional to flﬁff
(blue) and the true density curves for ff (pink) and fzﬁ (orange) in Example 2

2. Use hierarchical or sequential Monte Carlo fusion and samples for 7 to
obtain samples for m o< f; f5
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Figure 8: Kernel density fitting for 7"
(sequential Monte Carlo fusion)

Figure 7: Kernel density fitting for 7"
(hierarchical Monte Carlo fusion)
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Figure 9: Kernel density fitting based on 10, 000 realisations for density proportional to 7
based on hierarchical fusion (red dashed), sequential fusion (green dotted), and the true
density curves for f; (pink) and f; (orange) in Example 2



