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Introduction to Fusion methodologies

What is the Fusion problem?

Fusion Problem

• Target fusion density:

f (x) ∝
C∏

c=1

fc(x)

where each sub-posterior, fc(x), is a density representing one of the C
distributed inferences we wish to unify

• No general analytical approach
• Monte Carlo: assume we can sample x (c) ∼ fc(x)

• Applications:
• Expert elicitation: combining views of multiple experts
• Big Data (by construction)

• Partitioning large datasets to make them more manageable

• Inference in privacy settings
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Introduction to Fusion methodologies

What is the Fusion problem?

Fork-and-join

The fork-and-join approach:
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Introduction to Fusion methodologies

What is the Fusion problem?

Some Fork-and-Join methods

• Several fork-and-join methods have been developed (typically for Bayesian
inference for large dataset applications):

• Kernel density averaging (KDEMC) [Neiswanger et al., 2014]
• Weierstrass sampler (WRS) [Wang and Dunson, 2013]
• Consensus Monte Carlo (CMC) [Scott et al., 2016]

• A primary weakness of these methods is that the recombination is inexact
in general and involve approximations

• CMC is exact if all sub-posteriors are Gaussian
• All theory is asymptotic in the number of observations

• However, Monte Carlo Fusion [Dai et al., 2019] (and subsequently Bayesian
Fusion [Dai et al., 2021]) is exact in the sense it targets the correct fusion
density
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Introduction to Fusion methodologies

Monte Carlo Fusion

An extended target density

Proposition
Suppose that pc(y |x (c)) is the transition density of a stochastic process with
stationary distribution f 2c (x). The (C + 1)d-dimensional (fusion) density
proportional to the integrable function

g
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
f 2c

(
x (c)

)
· pc

(
y
∣∣∣x (c)

)
· 1

fc (y)

]
admits the marginal density f for y .

Main idea: If we can sample from g , then we can can obtain a draw from the
fusion density (y ∼ f )
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Introduction to Fusion methodologies

Monte Carlo Fusion

An extended target density

• There are many possible choices for pc(y |x (c))

• Let pc(y |x (c)) := pT ,c(y |x (c)), the transition density of the d-dimensional

(double) Langevin (DL) diffusion processes X (c)
t from x (c) to y for

c = 1, . . . ,C , for a pre-defined time T > 0 given by

dX (c)
t = ∇ log fc

(
X (c)

t

)
dt + dW (c)

t ,

(where W (c)
t is d-dimensional Brownian motion and ∇ is the gradient

operator over x)
• Has stationary distribution f 2c (x)
• Sample paths of DL diffusions can be simulated exactly using Path Space

Rejection Sampling / Exact Algorithm methodology [Beskos et al., 2005,
2006; Pollock et al., 2016]
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Introduction to Fusion methodologies

Monte Carlo Fusion

Constructing a rejection sampler for g

• Extended target density:

g
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
f 2c

(
x (c)

)
· pT ,c

(
y
∣∣∣x (c)

)
· 1

fc (y)

]

• Consider the proposal density h for the extended target g :

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

(
−C · ∥y − x̄∥2

2T

)

• x̄ = 1
C

∑C
c=1 x (c)

• T is an arbitrary positive constant
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Introduction to Fusion methodologies

Monte Carlo Fusion

Constructing a rejection sampler for g

• Simulation from h is easy:

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

(
−C · ∥y − x̄∥2

2T

)

1. Simulate x (c) ∼ fc(x) independently
2. Simulate y ∼ Nd(x̄ , T

C Id)
• This value y ends up being our proposal for f
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Introduction to Fusion methodologies

Monte Carlo Fusion

Rejection sampling - acceptance probability

• Acceptance probability:

g(x (1), . . . , x (C), y)
h(x (1), . . . , x (C), y)

∝ ρ0 · ρ1

where{
ρ0 := e−

Cσ2

2T , σ2 = 1
C

∑C
c=1

∥∥x (c) − x̄
∥∥2

ρ1 := EW̄

(∏C
c=1

[
exp
{
−
∫ T
0

(
ϕc

(
X (c)

t

)
−Φc

)
dt
}])

where W̄ denotes the law of C independent Brownian bridges

X (1)
t , . . . ,X (C)

t with X0 = x (c) and X (c)
T = y

• Trade-off with choice of T : as T increases, ρ0 increases, but this results in
ρ1 to be small (might typically decrease exponentially with T )
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Introduction to Fusion methodologies

Monte Carlo Fusion

ρ1 Acceptance Probability

ρ1 := EW̄

(
C∏

c=1

[
exp

{
−
∫ T

0

(
ϕc

(
X (c)

t

)
−Φc

)
dt

}])
where

• ϕc(x) = 1
2

(
∥∇ log fc(x)∥2 +∆ log fc(x)

)
• Φc are constants such that for all x , ϕc(x) ≥ Φc for c ∈ {1, . . . ,C}
• Events of probability ρ1 can be simulated using Poisson thinning and
methodology called Path-space Rejection Sampling (PSRS) or the Exact
Algorithm (Beskos et al. [2005], Beskos et al. [2006], Pollock et al. [2016])
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Introduction to Fusion methodologies

Monte Carlo Fusion

Monte Carlo Fusion - Summary

• Aim: Sample from g (admits marginal density f for y)
• Proposal:

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

(
−C · ∥y − x̄∥2

2T

)

• Accept y as a draw from fusion density f with probability:

g(x (1), . . . , x (C), y)
h(x (1), . . . , x (C), y)

∝ ρ0 · ρ1
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Introduction to Fusion methodologies

Limitations of Monte Carlo Fusion

Limitations of Monte Carlo Fusion

• Robustness: there is a lack of robustness when:
• sub-posterior correlation increases
• C increases
• d increases
• combining conflicting sub-posteriors

• Aim: To construct a fusion algorithm / framework to alleviate some of
these limitations (see Dai et al. [2021]; Chan et al. [2021] for full details)
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Divide-and-Conquer Generalised Monte Carlo Fusion

The Generalised Monte Carlo Fusion (GMCF) approach

Problem: Scalability with sub-posterior correlation

• Recall we have the flexibility to choose different pc (transition density of
stochastic process with f 2c invariant density)

• Now, we choose pc to be the transition density of the d-dimensional

(double) Langevin (DL) diffusion processes X (c)
t with covariance matrix, Λc

from x (c) to y for c = 1, . . . ,C , over [0,T ] given by

dX (c)
t = Λc∇ log fc

(
X (c)

t

)
dt + Λ1/2

c dW (c)
t ,

• Has stationary density proportional to f 2c (x)
• Λc is the preconditioning matrix (enables incorporation of covariance /

correlation structure into our algorithm)
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Divide-and-Conquer Generalised Monte Carlo Fusion

Constructing an importance sampler

• Switch to importance sampler for the extended target density
g(x (1), . . . , x (C), y):

• Rejection sampling can be wasteful
• We will subsequently embed this approach within a SMC algorithm

• Consider an alternative proposal density h for the extended target g :

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

{
− (y − x̃)⊺Λ−1(y − x̃)

2T

}
,

where

x̃ :=

(
C∑

c=1

Λ−1
c

)−1( C∑
c=1

Λ−1
c x (c)

)
, Λ−1 :=

C∑
c=1

Λ−1
c .
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Divide-and-Conquer Generalised Monte Carlo Fusion

Importance weights

• Importance weights:

g(x (1), . . . , x (C), y)
h(x (1), . . . , x (C), y)

∝ ρ0 · ρ1

where ρ0 := exp
{
−
∑C

c=1
(x̃−x (c))⊺Λ−1

c (x̃−x (c))
2T

}
ρ1 :=

∏C
c=1 EWΛc

[
exp

{
−
∫ T

0

(
ϕc

(
X (c)

t

)
−Φc

)
dt
}]

where ϕc(x) := 1
2

(
∇ log fc(x)⊺Λc∇ log fc(x) + Tr

(
Λc∇2 log fc(x)

))
, with

WΛc denoting the law of a Brownian bridge {X (c)
t , t ∈ [0,T ]} with

X (c)
0 := x (c), X (c)

T := y and covariance matrix Λc
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Divide-and-Conquer Generalised Monte Carlo Fusion

Scalability with sub-posterior correlation

In our Generalised Monte Carlo Fusion setting:

• Able to incorporate covariance / correlation information within our
proposals and through pc and h (in MCF Λc = Id for c = 1, . . . ,C )

• Unfortunately no longer have i.i.d. draws from f but now have weighted
samples to approximate f (later embed within divide-and-conquer SMC
[Lindsten et al., 2017] framework)
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

Problem: Scalability with C

The (Generalised) Monte Carlo Fusion algorithm implies a fork-and-join
approach:

• Not necessarily the most efficient way to combine sub-posteriors

• For MCF, acceptance probabilities typically decrease geometrically with C
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

• Solution: Divide-and-Conquer Monte Carlo Fusion
• We could perform fusion in a proper divide-and-conquer framework

• i.e. a fork-and-join method is recursively applied

• Two possible choices are balanced-binary (left) and progressive (right) trees

Note: Other trees are possible
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Divide-and-Conquer Generalised Bayesian Fusion

Generalised Bayesian Fusion

Problem: Robustness to conflicting sub-posteriors
• Generalising the Bayesian Fusion approach of Dai et al. [2021]
• Recall choosing a value T > 0 for MCF can be hard:

• Want to make T large so that ρ0 is large - but this makes ρ1 smaller (since
we have to simulate a diffusion over a longer time horizon T )

• Solution: Introduce temporal partition of T
• Have the flexibility to choose T large enough for initialisation, while being

able to have small intervals in the partition

t0 tnt1 t2 ... tn−1

x0

(5)

x0

(2)

x0

(3)

x0

(1)

x0

(4)

y

Time

X
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Examples

Examples

• We compare our methodology with the approximate methodologies
KDEMC [Neiswanger et al., 2014], WRS [Wang and Dunson, 2013] and
CMC [Scott et al., 2016]

• To compare methods we calculate the integrated absolute distance metric

IAD =
1

2d

d∑
j=1

∫ ∣∣∣f̂ (xj)− f (xj)
∣∣∣ dxj ∈ [0, 1]

where f̂ (xj) is the marginal density for xj based on the method applied
(computed using a kernel density estimate) and f (xj) is target marginal
density

• Gives a measure of how accurate our samples are to our target (lower is
better)
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Examples

Logistic regression

Logistic regression

• Simulated data example with n = 1000 and d = 5 (and set N = 10000)
• Small data size means that large data assumptions will fail

• We split the data into C = 4, 8, 16, 32, 64 and apply D&C-GBF (using a
balanced binary tree approach)
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Examples

Negative Binomial regression

Negative Binomial regression

• Using the Bike sharing dataset (n = 17379, d = 10) (and set N = 10000)

• We split the data into C = 4, 8, 16, 32, 64, 128 and apply D&C-GBF (using
a balanced binary tree approach)
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https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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Concluding remarks and future directions

Ongoing research questions

• Reducing the computational cost of the Fusion approach
• Exactness comes at a cost

• Practical implementation considerations for specific applications:
• Big data setting: evaluating ϕc has O(mc) cost - can perhaps employ

sub-sampling methods to reduce this cost
• Confidential fusion (Con-fusion): where sharing information/data between

cores is not permitted

• Scalability with dimension
• Performance with regards to dimension has improved since MCF, but not

been explicitly addressed
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