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Divide-and-Conquer

• Target:

π(x) ∝
C∏

c=1

fc(x) (1)

where each sub-posterior, fc(x), is a density representing one
of the C distributed inferences we wish to unify

• Advantage: inference on each smaller dataset can be
conducted independently in parallel
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Divide-and-Conquer

Figure 1: Visual representation of the Monte Carlo Fusion approach
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Divide-and-Conquer

• Several divide-and-conquer methods were mentioned in the
paper: e.g. Neiswanger et al. [2013], Weierstrass sampler
[Wang and Dunson, 2013], Consensus Monte Carlo [Scott
et al., 2016]

• However, a primary weakness of these methods is that the
recombination is inexact
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Monte Carlo Fusion

• Monte Carlo Fusion [Dai et al., 2019] is the first exact fusion
inference method that allows sampling from (1)

• Achieved by constructing a rejection sampler on an extended
space
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Connections to ScaLE

• Both algorithms use the Langevin diffusion in their
mathematical construction

• Both algorithms utilise methodology for the exact simulation
of diffusions (Beskos et al. [2005], Beskos et al. [2006],
Pollock et al. [2016])

• Monte Carlo Fusion uses the function φ : Rd → R defined by
(3) in Section 2
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