Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion

MATH5004M: Bayesian Sports Modelling Ryan Chan 200850644

May 22, 2018

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
Table	of contonto			

Table of contents

- Negative Binomial Model
 The model
- Results from the Negative Binomial modelUsing the model for prediction

4 Model Assessment

• Results and comparison to Baio & Blangiardo's model (2010)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Discussion

- Strengths and weaknesses
- Conclusions

Introduction •	Negative Binomial Model 000000	Results from the Negative Binomial model	Model Assessment	Discussion 0000
Introdu	iction			

Project aims:

- Build a Bayesian hierarchical model to predict football results in the Premier League
- Implement the model using Hamiltonian Monte Carlo with the Stan programming language and R
- Look at different techniques to assess model performance and compare with Baio & Blangiardo's model (2010)

TL. N.				
	00000	00000000	000	0000
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion

- Here, we use the negative binomial distribution to model the number of goals scored by the home and away team.
- The use of the negative binomial distribution in football models have been largely ignored.
- Generally, an independent Poisson distribution is used to model the number of goals scored by each team.
- We use the parametrisation that Stan uses in terms of the mean μ and size n, which has the probability mass function:

Introduction 0	Negative Binomial Model ●00000	Results from the Negative Binomial model	Model Assessment	Discussion 0000
	L' D'	• I NA I I		

- Here, we use the negative binomial distribution to model the number of goals scored by the home and away team.
- The use of the negative binomial distribution in football models have been largely ignored.
- Generally, an independent Poisson distribution is used to model the number of goals scored by each team.
- We use the parametrisation that Stan uses in terms of the mean μ and size n, which has the probability mass function:

$$p(x) = \frac{(x+n-1)!}{(n-1)!x!} \left(\frac{n}{n+\mu}\right)^n \left(\frac{\mu}{\mu+n}\right)^x$$

	Dia	tel Mastel		
	00000	000000000	000	0000
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion

- Let y_{g1} and y_{g2} denote the number of goals scored by the home and away team in the *g*-th game of the season, respectively.
- We believe these follow a negative binomial distribution, with mean μ_{gj} and size n_j , where j = 1 for the home goals and j = 2 for the away goals:

Introduction 0	Negative Binomial Model 0●0000	Results from the Negative Binomial model	Model Assessment	Discussion 0000
TTI NI	D'	• I N A I I		

- Let y_{g1} and y_{g2} denote the number of goals scored by the home and away team in the *g*-th game of the season, respectively.
- We believe these follow a negative binomial distribution, with mean μ_{gj} and size n_j , where j = 1 for the home goals and j = 2 for the away goals:

$$y_{gj} \mid \mu_{gj}, n_j \sim \mathsf{NB}(\mu_{gj}, n_j),$$

where μ_{gj} represents the mean number of goals expected to be scored by the home team (j = 1) and the away team (j = 2) in the *g*-th game of the season.

Introduction 0	Negative Binomial Model 00●000	Results from the Negative Binomial model	Model Assessment	Discussion 0000
The Ne	gative Binomi	ial Model		

• For the mean number of goals, we assume a log-linear effect, where

$$\begin{split} &\log \ \mu_{g1} = home_att_{h(g)} + away_def_{a(g)}, \\ &\log \ \mu_{g2} = away_att_{a(g)} + home_def_{h(g)}. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction 0	Negative Binomial Model 00●000	Results from the Negative Binomial model	Model Assessment	Discussion 0000

• For the mean number of goals, we assume a log-linear effect, where

$$\begin{split} &\log \ \mu_{g1} = home_att_{h(g)} + away_def_{a(g)}, \\ &\log \ \mu_{g2} = away_att_{a(g)} + home_def_{h(g)}. \end{split}$$

• For the home and away parameters for the attacking and defensive strengths for each team, t = 1, ..., T, where T is the number of teams in the league,

$$\begin{split} & \text{home}_\text{att}_t \sim \mathsf{N}(\mu_{h_\text{att}}, \sigma_{\text{att}}^2), \\ & \text{away}_\text{att}_t \sim \mathsf{N}(\mu_{a_\text{att}}, \sigma_{\text{att}}^2), \\ & \text{home}_\text{def}_t \sim \mathsf{N}(\mu_{h_\text{def}}, \sigma_{\text{def}}^2), \\ & \text{away}_\text{def}_t \sim \mathsf{N}(\mu_{a_\text{def}}, \sigma_{\text{def}}^2). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
0	000000		000	0000

To impose identifiability constraints, we use a sum-to-zero constraint, so

$$\begin{split} &\sum_{t=1}^{T} \textit{home_att}_t = 0, \sum_{t=1}^{T} \textit{away_att}_t = 0, \\ &\sum_{t=1}^{T} \textit{home_def}_t = 0, \sum_{t=1}^{T} \textit{away_def}_t = 0. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction O	Negative Binomial Model 0000●0	Results from the Negative Binomial model	Model Assessment	Discussion 0000
	D'	- I NA - I I		

• Then the prior distributions for the hyperparameters are as follows:

$$\begin{split} \mu_{h_att} &\sim \mathsf{N}(0.2,1), \\ \mu_{a_att} &\sim \mathsf{N}(0,1), \\ \mu_{h_def} &\sim \mathsf{N}(-0.2,1), \\ \mu_{a_def} &\sim \mathsf{N}(0,1). \\ \sigma_{att}^2 &\sim \mathsf{Gamma}(10,10), \\ \sigma_{def}^2 &\sim \mathsf{Gamma}(10,10). \end{split}$$

Introduction 0	Negative Binomial Model 0000●0	Results from the Negative Binomial model	Model Assessment	Discussion 0000
	U. DI	• I N A I I		

• Then the prior distributions for the hyperparameters are as follows:

$$\begin{split} \mu_{h_att} &\sim \mathsf{N}(0.2,1), \\ \mu_{a_att} &\sim \mathsf{N}(0,1), \\ \mu_{h_def} &\sim \mathsf{N}(-0.2,1), \\ \mu_{a_def} &\sim \mathsf{N}(0,1). \\ \sigma_{att}^2 &\sim \mathsf{Gamma}(10,10), \\ \sigma_{def}^2 &\sim \mathsf{Gamma}(10,10). \end{split}$$

• And the prior distribution for the size n_j for j = 1, 2 is given by

$$n_1 \sim \text{Gamma}(2.5, 0.05),$$

 $n_2 \sim \text{Gamma}(2.5, 0.05).$

	000000	000000000	000	0000
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion

A graphical representation of this model is:

Figure: The DAG representation of the Negative-Binomial Model

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
		00000000		

The Negative Binomial Model - Results

• We use the data from the 2017/18 Premier League season, to obtain estimates for the attack and defence parameters for each team.

• The data is taken from the the football-data.co.uk website

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
	000000	00000000	000	0000

The Negative Binomial Model - Results

• We use the data from the 2017/18 Premier League season, to obtain estimates for the attack and defence parameters for each team.

- The data is taken from the the football-data.co.uk website
- Higher attack parameter \implies better attacking ability.
- Higher defence parameter \implies worse defending ability.

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
		00000000		

Home Effects

Figure: Plot of the posterior means for the home attack parameter against the home defence parameter for each team

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Away Effects

Figure: Plot of the posterior means for the away attack parameter against the away defence parameter for each team

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
		00000000		

Overall Effects

Figure: Plot of the posterior means for the attack parameter against the defence parameter

イロト 不得 トイヨト イヨト

€ 990

Using this model for prediction of football matches, we can obtain posterior probabilities for:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- match outcomes (home win / draw / away win),
- final scores.

Using this model for prediction of football matches, we can obtain posterior probabilities for:

- match outcomes (home win / draw / away win),
- final scores.

After using the Stan programming language and R to implement the model, we obtain a sample from our target density. Once we have a sample from our posterior distribution, we can draw from a predictive distribution of unobserved data or future data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction O	Negative Binomial Model 000000	Results from the Negative Binomial model	Model Assessment	Discussion 0000
		1 I N A I I 1 1 1 C	12.00	

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):

• Extract the samples for the attack and defence parameters for each team and for the size n_j , for j = 1, 2.

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):

- Extract the samples for the attack and defence parameters for each team and for the size n_j , for j = 1, 2.
- 2 Use the formula for μ_j , j = 1, 2, to get

 $\log \mu_1 = home_att_A + away_def_B,$ $\log \mu_2 = away_att_B + home_def_A.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):

- Extract the samples for the attack and defence parameters for each team and for the size n_j , for j = 1, 2.
- 2 Use the formula for μ_j , j = 1, 2, to get

 $\log \mu_1 = home_att_A + away_def_B,$ $\log \mu_2 = away_att_B + home_def_A.$

 Obtain draws from our likelihood, π(y_j^{*} | μ_j, n_j), for j = 1,2, (from a negative binomial distribution).

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):

- Extract the samples for the attack and defence parameters for each team and for the size n_j , for j = 1, 2.
- 2 Use the formula for μ_j , j = 1, 2, to get

 $\log \mu_1 = home_att_A + away_def_B,$ $\log \mu_2 = away_att_B + home_def_A.$

- Obtain draws from our likelihood, π(y_j^{*} | μ_j, n_j), for j = 1,2, (from a negative binomial distribution).
- Now we have a sample from the predictive distribution for number of goals scored by each team, and we can use these for prediction.

Introduction O	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion 0000

• To predict the outcome of a match, we estimate the probabilities as:

$$\begin{aligned} \mathsf{Pr}(\mathsf{Home Win}) &= \frac{\mathsf{Number of times } y_1^* > y_2^*}{\mathsf{Number of samples}}, \\ \mathsf{Pr}(\mathsf{Draw}) &= \frac{\mathsf{Number of times } y_1^* = y_2^*}{\mathsf{Number of samples}}, \\ \mathsf{Pr}(\mathsf{Away Win}) &= \frac{\mathsf{Number of times } y_1^* < y_2^*}{\mathsf{Number of samples}}. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction 0	n Negative B 000000	inomial Model	Results from t	the Negative Binomial mod O	del	Model A	ssessment	Discussion 0000

• To predict the outcome of a match, we estimate the probabilities as:

$$\begin{aligned} \Pr(\mathsf{Home Win}) &= \frac{\mathsf{Number of times } y_1^* > y_2^*}{\mathsf{Number of samples}}, \\ \Pr(\mathsf{Draw}) &= \frac{\mathsf{Number of times } y_1^* = y_2^*}{\mathsf{Number of samples}}, \\ \Pr(\mathsf{Away Win}) &= \frac{\mathsf{Number of times } y_1^* < y_2^*}{\mathsf{Number of samples}}. \end{aligned}$$

• To predict the score of a match, we obtain the MAP estimate for the number of goals scored (find the mode).

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
	000000	0000000000	000	0000

• To predict the outcome of a match, we estimate the probabilities as:

$$\Pr(\text{Home Win}) = rac{ ext{Number of times } y_1^* > y_2^*}{ ext{Number of samples}},$$

 $\Pr(ext{Draw}) = rac{ ext{Number of times } y_1^* = y_2^*}{ ext{Number of samples}},$
 $\Pr(ext{Away Win}) = rac{ ext{Number of times } y_1^* < y_2^*}{ ext{Number of samples}}.$

- To predict the score of a match, we obtain the MAP estimate for the number of goals scored (find the mode).
- Alternatively, we can estimate the probability of the match ending with team A scoring *a* goals and team B scoring *b* goals as:

$$\mathsf{Pr}(\mathsf{Score ending at a-b}) = \mathsf{Pr}(y_1^* = a) \times \mathsf{Pr}(y_2^* = b).$$

• Extract the samples for the attack and defence parameters for TOT and LEI and n_j for j = 1, 2.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction Negative Binomial Model Results from the Negative Binomial model October Results from the Negative Binomial model October Results from the Negative Binomial Model - Tottenham Hotspurs vs. Leicester City

- Extract the samples for the attack and defence parameters for TOT and LEI and n_j for j = 1, 2.
- Use the formula:

$$\log \mu_1 = home_att_{TOT} + away_def_{LEI}, \\ \log \mu_2 = away_att_{LEI} + home_def_{TOT}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction Negative Binomial Model Results from the Negative Binomial model Occord Negative Binomial Model Assessment Occord Negative Binomial Model - Tottenham Hotspurs vs. Leicester City

- Extract the samples for the attack and defence parameters for TOT and LEI and n_j for j = 1, 2.
- Use the formula:

$$\log \mu_1 = home_att_{TOT} + away_def_{LEI},$$

$$\log \mu_2 = away_att_{LEI} + home_def_{TOT}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Simulate from a NB(μ_j, n_j) to obtain a posterior predictive sample for goals scored by each team. Introduction Negative Binomial Model Results from the Negative Binomial model October Presative Binomial model October October Content of Conte

• The model predictions for the outcome for this match was:

$$\label{eq:product} \begin{split} \mathsf{Pr}(\mathsf{Tottenham}\ \mathsf{Win}) &= 0.509,\\ \mathsf{Pr}(\mathsf{Draw}) &= 0.235,\\ \mathsf{Pr}(\mathsf{Leicester}\ \mathsf{Win}) &= 0.256. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction Negative Binomial Model Results from the Negative Binomial model Model Assessment Discussion occorrection of the Negative Binomial Model - Tottenham Hotspurs vs. Leicester City

• The model predictions for the outcome for this match was:

• The MAP estimate for the number of goals scored predicted the score of the match would be 1-1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction Negative Binomial Model Results from the Negative Binomial model Occorrect City Negative Binomial Model - Tottenham Hotspurs vs.

The probability estimates for the final score were:

				Т	ottenhar	n		
		0	1	2	3	4	5	6+
	0	0.048	0.081	0.076	0.049	0.024	0.011	0.006
	1	0.055	0.093	0.088	0.056	0.028	0.012	0.007
2	2	0.036	0.060	0.056	0.036	0.018	0.008	0.005
ste	3	0.016	0.027	0.025	0.016	0.008	0.004	0.002
ice	4	0.006	0.009	0.009	0.006	0.003	0.001	0.001
Г	5	0.002	0.003	0.003	0.002	0.001	0.000	0.000
	6+	0.000	0.001	0.001	0.000	0.000	0.000	0.000

Table: Score probabilities for Tottenham vs. Leicester

Model	Δ ssessment -	methods		
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
0	000000		●○○	0000

The scoring rules that were used to assess the model's performance for the prediction of football scores were:

- Cross-Validation
- The Brier score
- The rank probability score

Additionally, we assessed the model's performance by attempting to predict a league table using the model and using it as a basis of a betting model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Negative Binomial Mo	del Results from the Negative Binomial model	Model Assessment	Discussion
0	000000		○●○	0000
	•			

Model Assessment - results and comparison

We calculate the cross-validation score, Brier score, rank probability score and the profit/loss from betting £10 on the most probable outcome for the two models for the 2017/18 Premier League season.

Model	Cross-Validation	Brier score	Average RPS	Profit/Loss
BB	57.8%	0.532	0.173	£449.9
NB	59.7%	0.540	0.177	£873.3

Table: Results and comparison of the Negative Binomial model to Baio & Blangiardo's model (2010)

Introduction O	Negative Binomial Model	Results from the Nega	tive Binomial model	Model Assessment ○O●	Discussion 0000
	A		1.		

Model Assessment - betting results

Profit/Loss (PL)	Frequency	
-10.00 (lost bet)	156	
$0 \leq PL < 10$	132	
$10 \le PL < 20$	63	
$20 \le PL < 30$	13	
$30 \le PL < 40$	2	
$40 \le PL < 50$	3	
$PL \ge 50$	1	

(a) Baio & Blangiardo's model

Profit/Loss	Frequency
-10.00 (lost bet)	149
$0 \leq PL < 10$	133
$10 \le PL < 20$	49
$20 \le PL < 30$	27
$30 \le PL < 40$	7
$40 \le PL < 50$	3
$PL \ge 50$	2

(b) Negative Binomial model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Table: Frequency of each profit/loss for each model in $\pounds s$

Introduction O	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion ●000
Discuss	ion - strength	S		

・ロ・ <
ゆ ・ <
き・ <
き・ 、
き・ のへの
</p>

Discuss	ion - strength	c		
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
0	000000		000	•••••

• By simply just using previous goals data, we are able to achieve a good model for prediction of football matches.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion ••••
Discuss	sion - strength	S		

- By simply just using previous goals data, we are able to achieve a good model for prediction of football matches.
- By assessing the model's usefulness as a basis of a decision rule for betting, it was able to turn a profit has real world applications.

Discuss			000	0000
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion

- By simply just using previous goals data, we are able to achieve a good model for prediction of football matches.
- By assessing the model's usefulness as a basis of a decision rule for betting, it was able to turn a profit has real world applications.
- By splitting up the attack and defence parameters for home and away and not using a constant home-advantage parameter as Baio & Blangiardo (2010), Dixon & Coles (1997), Lee (1997), Maher (1982), we are able to encode more information on each team's performances.

_ .				
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
0	000000		000	0000

Discussion - weaknesses

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Introduction 0	Negative Binomial Model 000000	Results from the Negative Binomial model	Model Assessment	Discussion 0●00
Discuss	sion - weaknes	ses		

• Although the model was able to turn a profit, there was still 149 games that the model incorrectly predicted the outcome of the game ($\approx 40.3\%$), so there is still a lot of room for improvement.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

<u> </u>			000	0000
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion

- Discussion weaknesses
 - Although the model was able to turn a profit, there was still 149 games that the model incorrectly predicted the outcome of the game ($\approx 40.3\%$), so there is still a lot of room for improvement.
 - The model only uses goals to obtain estimates for parameters for each team.
 - Goals may not the best indicator for how well a team is performing teams can be lucky or unlucky.
 - Possibly by incorporating more data, we can obtain more accurate estimates for the attack and defence parameters for each team.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Discuss	aion waaknaa			
	000000	000000000		0000
Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion

- Discussion weaknesses
 - Although the model was able to turn a profit, there was still 149 games that the model incorrectly predicted the outcome of the game ($\approx 40.3\%$), so there is still a lot of room for improvement.
 - The model only uses goals to obtain estimates for parameters for each team.
 - Goals may not the best indicator for how well a team is performing teams can be lucky or unlucky.
 - Possibly by incorporating more data, we can obtain more accurate estimates for the attack and defence parameters for each team.
 - Model ignores other possible factors that can affect team performance, for example:
 - injury/resting of star players
 - fatigue of players / number of days rest between games

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- distance travelled for away team
- effect of managerial changes

O O	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion ○○●O				
Summary								

- We built a Bayesian hierarchical model for prediction of football results, which used a negative binomial distribution to model the goals scored by each team.
- By using several techniques for model assessment, there was not much difference between the negative binomial model and Baio & Blangiardo's model.
 - But the model was far superior when using it as a basis for a betting decision rule and gave a much higher profit return.

Introduction	Negative Binomial Model	Results from the Negative Binomial model	Model Assessment	Discussion
				0000

Thank you for listening

