MATH5004M: Bayesian Sports Modelling

Ryan Chan
200850644

May 22, 2018

Table of contents

(1) Introduction

- Project aims
(2) Negative Binomial Model
- The model
(3) Results from the Negative Binomial model
- Using the model for prediction
(4) Model Assessment
- Results and comparison to Baio \& Blangiardo's model (2010)
(5) Discussion
- Strengths and weaknesses
- Conclusions

Introduction

Project aims:

- Build a Bayesian hierarchical model to predict football results in the Premier League
- Implement the model using Hamiltonian Monte Carlo with the Stan programming language and R
- Look at different techniques to assess model performance and compare with Baio \& Blangiardo's model (2010)

The Negative Binomial Model

- Here, we use the negative binomial distribution to model the number of goals scored by the home and away team.
- The use of the negative binomial distribution in football models have been largely ignored.
- Generally, an independent Poisson distribution is used to model the number of goals scored by each team.
- We use the parametrisation that Stan uses in terms of the mean μ and size n, which has the probability mass function:

The Negative Binomial Model

- Here, we use the negative binomial distribution to model the number of goals scored by the home and away team.
- The use of the negative binomial distribution in football models have been largely ignored.
- Generally, an independent Poisson distribution is used to model the number of goals scored by each team.
- We use the parametrisation that Stan uses in terms of the mean μ and size n, which has the probability mass function:

$$
p(x)=\frac{(x+n-1)!}{(n-1)!x!}\left(\frac{n}{n+\mu}\right)^{n}\left(\frac{\mu}{\mu+n}\right)^{x} .
$$

The Negative Binomial Model

- Let $y_{g 1}$ and $y_{g 2}$ denote the number of goals scored by the home and away team in the g-th game of the season, respectively.
- We believe these follow a negative binomial distribution, with mean $\mu_{g j}$ and size n_{j}, where $j=1$ for the home goals and $j=2$ for the away goals:

The Negative Binomial Model

- Let $y_{g 1}$ and $y_{g 2}$ denote the number of goals scored by the home and away team in the g-th game of the season, respectively.
- We believe these follow a negative binomial distribution, with mean $\mu_{g j}$ and size n_{j}, where $j=1$ for the home goals and $j=2$ for the away goals:

$$
y_{g j} \mid \mu_{g j}, n_{j} \sim \mathrm{NB}\left(\mu_{g j}, n_{j}\right)
$$

where $\mu_{g j}$ represents the mean number of goals expected to be scored by the home team $(j=1)$ and the away team $(j=2)$ in the g-th game of the season.

The Negative Binomial Model

- For the mean number of goals, we assume a log-linear effect, where

$$
\begin{aligned}
& \log \mu_{g 1}=\text { home_att }_{h(g)}+\text { away_def }_{a(g)}, \\
& \log \mu_{g 2}=\text { away_att }_{a(g)}+\text { home_def }_{h(g)} .
\end{aligned}
$$

The Negative Binomial Model

- For the mean number of goals, we assume a log-linear effect, where

$$
\begin{aligned}
& \log \mu_{g 1}=\text { home_att }_{h(g)}+\text { away_def }_{a(g)}, \\
& \log \mu_{g 2}=\text { away_att }_{a(g)}+\text { home_def }_{h(g)} .
\end{aligned}
$$

- For the home and away parameters for the attacking and defensive strengths for each team, $t=1, \ldots, T$, where T is the number of teams in the league,

$$
\begin{aligned}
\text { home_att }_{t} & \sim \mathrm{~N}\left(\mu_{h_{-} a t t}, \sigma_{a t t}^{2}\right) \\
\text { away_att }_{t} & \sim \mathrm{~N}\left(\mu_{a_{-} a t t}, \sigma_{a t t}^{2}\right) \\
\text { home_def }_{t} & \sim \mathrm{~N}\left(\mu_{h_{-} d e f}, \sigma_{d e f}^{2}\right) \\
\text { away_def }_{t} & \sim \mathrm{~N}\left(\mu_{a_{-} d e f}, \sigma_{d e f}^{2}\right)
\end{aligned}
$$

The Negative Binomial Model

- To impose identifiability constraints, we use a sum-to-zero constraint, so

$$
\begin{aligned}
& \sum_{t=1}^{T} \text { home_att }_{t}=0, \sum_{t=1}^{T} \text { away_att }_{t}=0 \\
& \sum_{t=1}^{T} \text { home_def }_{t}=0, \sum_{t=1}^{T} \text { away_def }_{t}=0 .
\end{aligned}
$$

The Negative Binomial Model

- Then the prior distributions for the hyperparameters are as follows:

$$
\begin{aligned}
\mu_{h_{-} \text {att }} & \sim \mathrm{N}(0.2,1), \\
\mu_{a_{-} \text {att }} & \sim \mathrm{N}(0,1), \\
\mu_{h_{-} d e f} & \sim \mathrm{~N}(-0.2,1), \\
\mu_{\text {a_def }} & \sim \mathrm{N}(0,1) . \\
\sigma_{\text {att }}^{2} & \sim \operatorname{Gamma}(10,10), \\
\sigma_{\text {def }}^{2} & \sim \operatorname{Gamma}(10,10) .
\end{aligned}
$$

The Negative Binomial Model

- Then the prior distributions for the hyperparameters are as follows:

$$
\begin{aligned}
\mu_{h_{-} \text {att }} & \sim \mathrm{N}(0.2,1), \\
\mu_{a_{-} \text {att }} & \sim \mathrm{N}(0,1), \\
\mu_{h_{-} d e f} & \sim \mathrm{~N}(-0.2,1), \\
\mu_{\text {a_def }} & \sim \mathrm{N}(0,1) . \\
\sigma_{\text {att }}^{2} & \sim \operatorname{Gamma}(10,10), \\
\sigma_{\text {def }}^{2} & \sim \operatorname{Gamma}(10,10) .
\end{aligned}
$$

- And the prior distribution for the size n_{j} for $j=1,2$ is given by

$$
\begin{aligned}
& n_{1} \sim \operatorname{Gamma}(2.5,0.05) \\
& n_{2} \sim \operatorname{Gamma}(2.5,0.05)
\end{aligned}
$$

The Negative Binomial Model

A graphical representation of this model is:

Figure: The DAG representation of the Negative-Binomial Model

The Negative Binomial Model - Results

- We use the data from the 2017/18 Premier League season, to obtain estimates for the attack and defence parameters for each team.
- The data is taken from the the football-data.co.uk website

The Negative Binomial Model - Results

- We use the data from the 2017/18 Premier League season, to obtain estimates for the attack and defence parameters for each team.
- The data is taken from the the football-data.co.uk website
- Higher attack parameter \Longrightarrow better attacking ability.
- Higher defence parameter \Longrightarrow worse defending ability.

Home Effects

Figure: Plot of the posterior means for the home attack parameter against the home defence parameter for each team

Figure: Plot of the posterior means for the away attack parameter against the away defence parameter for each team

Overall Effects

Figure: Plot of the posterior means for the attack parameter against the defence parameter

The Negative Binomial Model - using it for prediction

Using this model for prediction of football matches, we can obtain posterior probabilities for:

- match outcomes (home win / draw / away win),
- final scores.

The Negative Binomial Model - using it for prediction

Using this model for prediction of football matches, we can obtain posterior probabilities for:

- match outcomes (home win / draw / away win),
- final scores.

After using the Stan programming language and R to implement the model, we obtain a sample from our target density.
Once we have a sample from our posterior distribution, we can draw from a predictive distribution of unobserved data or future data.

The Negative Binomial Model - using it for prediction

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):

The Negative Binomial Model - using it for prediction

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):
(1) Extract the samples for the attack and defence parameters for each team and for the size n_{j}, for $j=1,2$.

The Negative Binomial Model - using it for prediction

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):
(1) Extract the samples for the attack and defence parameters for each team and for the size n_{j}, for $j=1,2$.
(2) Use the formula for $\mu_{j}, j=1,2$, to get

$$
\begin{aligned}
& \log \mu_{1}=\text { home_att }_{A}+\text { away_def }_{B}, \\
& \log \mu_{2}=\text { away_att }
\end{aligned}
$$

The Negative Binomial Model - using it for prediction

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):
(1) Extract the samples for the attack and defence parameters for each team and for the size n_{j}, for $j=1,2$.
(2) Use the formula for $\mu_{j}, j=1,2$, to get

$$
\begin{aligned}
& \log \mu_{1}=\text { home_att }_{A}+\text { away_def }_{B}, \\
& \log \mu_{2}=\text { away_att }_{B}+\text { home_def }_{A} \text {. }
\end{aligned}
$$

(3) Obtain draws from our likelihood, $\pi\left(y_{j}^{*} \mid \mu_{j}, n_{j}\right)$, for $j=1,2$, (from a negative binomial distribution).

The Negative Binomial Model - using it for prediction

In our case, to predict a football match between team A (playing at home) vs. team B (playing away):
(1) Extract the samples for the attack and defence parameters for each team and for the size n_{j}, for $j=1,2$.
(2) Use the formula for $\mu_{j}, j=1,2$, to get

$$
\begin{aligned}
& \log \mu_{1}=\text { home_att }_{A}+\text { away_def }_{B}, \\
& \log \mu_{2}=\text { away_att }_{B}+\text { home_def }_{A} .
\end{aligned}
$$

(3) Obtain draws from our likelihood, $\pi\left(y_{j}^{*} \mid \mu_{j}, n_{j}\right)$, for $j=1,2$, (from a negative binomial distribution).
(9) Now we have a sample from the predictive distribution for number of goals scored by each team, and we can use these for prediction.

The Negative Binomial Model - using it for prediction

- To predict the outcome of a match, we estimate the probabilities as:

$$
\begin{aligned}
\operatorname{Pr}(\text { Home } \mathrm{Win}) & =\frac{\text { Number of times } y_{1}^{*}>y_{2}^{*}}{\text { Number of samples }}, \\
\operatorname{Pr}(\text { Draw }) & =\frac{\text { Number of times } y_{1}^{*}=y_{2}^{*}}{\text { Number of samples }}, \\
\operatorname{Pr}(\text { Away } \mathrm{Win}) & =\frac{\text { Number of times } y_{1}^{*}<y_{2}^{*}}{\text { Number of samples }} .
\end{aligned}
$$

The Negative Binomial Model - using it for prediction

- To predict the outcome of a match, we estimate the probabilities as:

$$
\begin{aligned}
\operatorname{Pr}(\text { Home } W \text { in }) & =\frac{\text { Number of times } y_{1}^{*}>y_{2}^{*}}{\text { Number of samples }}, \\
\operatorname{Pr}(\text { Draw }) & =\frac{\text { Number of times } y_{1}^{*}=y_{2}^{*}}{\text { Number of samples }}, \\
\operatorname{Pr}(\text { Away } W i n) & =\frac{\text { Number of times } y_{1}^{*}<y_{2}^{*}}{\text { Number of samples }} .
\end{aligned}
$$

- To predict the score of a match, we obtain the MAP estimate for the number of goals scored (find the mode).

The Negative Binomial Model - using it for prediction

- To predict the outcome of a match, we estimate the probabilities as:

$$
\begin{aligned}
\operatorname{Pr}(\text { Home Win }) & =\frac{\text { Number of times } y_{1}^{*}>y_{2}^{*}}{\text { Number of samples }}, \\
\operatorname{Pr}(\text { Draw }) & =\frac{\text { Number of times } y_{1}^{*}=y_{2}^{*}}{\text { Number of samples }}, \\
\operatorname{Pr}(\text { Away Win }) & =\frac{\text { Number of times } y_{1}^{*}<y_{2}^{*}}{\text { Number of samples }} .
\end{aligned}
$$

- To predict the score of a match, we obtain the MAP estimate for the number of goals scored (find the mode).
- Alternatively, we can estimate the probability of the match ending with team A scoring a goals and team B scoring b goals as:

$$
\operatorname{Pr}(\text { Score ending at } \mathrm{a}-\mathrm{b})=\operatorname{Pr}\left(y_{1}^{*}=a\right) \times \operatorname{Pr}\left(y_{2}^{*}=b\right) .
$$

The Negative Binomial Model - Tottenham Hotspurs vs.

 Leicester City- Extract the samples for the attack and defence parameters for TOT and LEI and n_{j} for $j=1,2$.

The Negative Binomial Model - Tottenham Hotspurs vs. Leicester City

- Extract the samples for the attack and defence parameters for TOT and LEI and n_{j} for $j=1,2$.
- Use the formula:

$$
\begin{aligned}
& \log \mu_{1}=\text { home_att } \\
& \log \mu_{2}=\text { awat }+ \text { away_deft } \text { def }_{\text {LEI }}, \\
& \text { home_def }
\end{aligned}
$$

The Negative Binomial Model - Tottenham Hotspurs vs. Leicester City

- Extract the samples for the attack and defence parameters for TOT and LEI and n_{j} for $j=1,2$.
- Use the formula:

$$
\begin{aligned}
& \log \mu_{1}=\text { home_att }_{T O T}+\text { away_def }_{\text {LEI }}, \\
& \log \mu_{2}=\text { away_att } t_{\text {LEI }}+\text { home_def }_{\text {TOT }} .
\end{aligned}
$$

- Simulate from a $N B\left(\mu_{j}, n_{j}\right)$ to obtain a posterior predictive sample for goals scored by each team.

The Negative Binomial Model - Tottenham Hotspurs vs.

 Leicester City- The model predictions for the outcome for this match was:

$$
\begin{aligned}
\operatorname{Pr}(\text { Tottenham Win }) & =0.509, \\
\operatorname{Pr}(\text { Draw }) & =0.235, \\
\operatorname{Pr}(\text { Leicester Win }) & =0.256 .
\end{aligned}
$$

The Negative Binomial Model - Tottenham Hotspurs vs.

 Leicester City- The model predictions for the outcome for this match was:

$$
\begin{aligned}
\operatorname{Pr}(\text { Tottenham Win }) & =0.509, \\
\operatorname{Pr}(\text { Draw }) & =0.235, \\
\operatorname{Pr}(\text { Leicester Win }) & =0.256
\end{aligned}
$$

- The MAP estimate for the number of goals scored predicted the score of the match would be 1-1.

The Negative Binomial Model - Tottenham Hotspurs vs.

 Leicester CityThe probability estimates for the final score were:

		Tottenham						
		0	1	2	3	4	5	6+
$\begin{aligned} & \stackrel{\searrow}{\#} \\ & \stackrel{H}{U} \\ & \stackrel{U}{\Delta} \end{aligned}$	0	0.048	0.081	0.076	0.049	0.024	0.011	0.006
	1	0.055	0.093	0.088	0.056	0.028	0.012	0.007
	2	0.036	0.060	0.056	0.036	0.018	0.008	0.005
	3	0.016	0.027	0.025	0.016	0.008	0.004	0.002
	4	0.006	0.009	0.009	0.006	0.003	0.001	0.001
	5	0.002	0.003	0.003	0.002	0.001	0.000	0.000
	6+	0.000	0.001	0.001	0.000	0.000	0.000	0.000

Table: Score probabilities for Tottenham vs. Leicester

Model Assessment - methods

The scoring rules that were used to assess the model's performance for the prediction of football scores were:

- Cross-Validation
- The Brier score
- The rank probability score

Additionally, we assessed the model's performance by attempting to predict a league table using the model and using it as a basis of a betting model.

Model Assessment - results and comparison

We calculate the cross-validation score, Brier score, rank probability score and the profit/loss from betting $£ 10$ on the most probable outcome for the two models for the 2017/18 Premier League season.

Model	Cross-Validation	Brier score	Average RPS	Profit/Loss
BB	57.8%	0.532	0.173	$£ 449.9$
NB	59.7%	0.540	0.177	$£ 873.3$

Table: Results and comparison of the Negative Binomial model to Baio \& Blangiardo's model (2010)

Model Assessment - betting results

Profit/Loss (PL)	Frequency
-10.00 (lost bet)	156
$0 \leq P L<10$	132
$10 \leq P L<20$	63
$20 \leq P L<30$	13
$30 \leq P L<40$	2
$40 \leq P L<50$	3
$P L \geq 50$	1

(a) Baio \& Blangiardo's model

Profit/Loss	Frequency
-10.00 (lost bet)	149
$0 \leq P L<10$	133
$10 \leq P L<20$	49
$20 \leq P L<30$	27
$30 \leq P L<40$	7
$40 \leq P L<50$	3
$P L \geq 50$	2

(b) Negative Binomial model Table: Frequency of each profit/loss for each model in £s

Discussion - strengths

Discussion - strengths

- By simply just using previous goals data, we are able to achieve a good model for prediction of football matches.

Discussion - strengths

- By simply just using previous goals data, we are able to achieve a good model for prediction of football matches.
- By assessing the model's usefulness as a basis of a decision rule for betting, it was able to turn a profit - has real world applications.

Discussion - strengths

- By simply just using previous goals data, we are able to achieve a good model for prediction of football matches.
- By assessing the model's usefulness as a basis of a decision rule for betting, it was able to turn a profit - has real world applications.
- By splitting up the attack and defence parameters for home and away and not using a constant home-advantage parameter as Baio \& Blangiardo (2010), Dixon \& Coles (1997), Lee (1997), Maher (1982), we are able to encode more information on each team's performances.

Discussion - weaknesses

Discussion - weaknesses

- Although the model was able to turn a profit, there was still 149 games that the model incorrectly predicted the outcome of the game $(\approx 40.3 \%)$, so there is still a lot of room for improvement.

Discussion - weaknesses

- Although the model was able to turn a profit, there was still 149 games that the model incorrectly predicted the outcome of the game $(\approx 40.3 \%)$, so there is still a lot of room for improvement.
- The model only uses goals to obtain estimates for parameters for each team.
- Goals may not the best indicator for how well a team is performing - teams can be lucky or unlucky.
- Possibly by incorporating more data, we can obtain more accurate estimates for the attack and defence parameters for each team.

Discussion - weaknesses

- Although the model was able to turn a profit, there was still 149 games that the model incorrectly predicted the outcome of the game ($\approx 40.3 \%$), so there is still a lot of room for improvement.
- The model only uses goals to obtain estimates for parameters for each team.
- Goals may not the best indicator for how well a team is performing - teams can be lucky or unlucky.
- Possibly by incorporating more data, we can obtain more accurate estimates for the attack and defence parameters for each team.
- Model ignores other possible factors that can affect team performance, for example:
- injury/resting of star players
- fatigue of players / number of days rest between games
- distance travelled for away team
- effect of managerial changes

Summary

- We built a Bayesian hierarchical model for prediction of football results, which used a negative binomial distribution to model the goals scored by each team.
- By using several techniques for model assessment, there was not much difference between the negative binomial model and Baio \& Blangiardo's model.
- But the model was far superior when using it as a basis for a betting decision rule and gave a much higher profit return.

Thank you for listening

