
Entale

Podcast Recommendation

● The Challenge: Develop a podcast recommendation algorithm

Recommender
User profile and/or
recent episode they

listened to

Podcast episodes
the user would enjoy

… but also expand their horizons!

● The Challenge: Develop a podcast recommendation algorithm

● The Data

Recommender
User profile and/or
recent episode they

listened to

Podcast episodes
the user would enjoy

… but also expand their horizons!

Episodes:
● Title, show, episode description
● Transcription
● Named entities
● Category

Users:
● Episodes listened (small overlap with

episode data) (1 year)
● Month of each listen
● Some show subscriptions (5 years)

Outline

- High level overview of approaches

- Different ways of representing and comparing podcasts
- Networks
- Topic models
- Pre-trained embeddings

- The Rabbit-hole recommender

- Evaluation and Limitations

- Future Work

Approach Overview

Approach 1: “Distance” based recommenders

Embed episodes
into a graph or

vector space

This lets us compare and
cluster them

mathematically

Approach 1: “Distance” based recommenders

Embed episodes
into a graph or

vector space

This lets us compare and
cluster them

mathematically

Different embeddings encode
different notions similarity
between episodes

Approach 1: “Distance” based recommenders

Embed episodes
into a graph or

vector space

Recommend
another episode
that is “nearby”

Consider a user’s most recent listen

Approach 1: “Distance” based recommenders

Embed episodes
into a graph or

vector space

Recommend
another episode
that is “nearby”

Consider a user’s most recent listen Represent the user in the same “space” - e.g.
average their listen history

Approach 2: Modern “Collaborative Filtering”

Representations of
both users and
podcasts which
jointly explain

observed behaviour

User listens as
indicators of

user
preferences

Use these to make
recommendations

about new podcasts
for the users

Approach 2: Modern “Collaborative Filtering”

Representations of
both users and
podcasts which
jointly explain

observed behaviour

User listens as
indicators of

user
preferences

Use these to make
recommendations

about new podcasts
for the users

Techniques in the pipeline:

Matrix factorisation Neural collaborative filtering Convolutional matrix factorisation

Approach 3: The Rabbit Hole

Identify specific
entities

discussed in a
podcast

Identify “candidates”
for recommendation
which focus in one of

these entities

Sort these candidates
according “similarity”
with user preferences

Episode Representation and Similarity Modelling

One step neighbour Community structure

Network-based recommendation

Hierarchical Stochastic Block Models (hSBMs)

- nonparametric: infer the number of topics

- hierarchical clustering (topics): clustering

different resolution -> serendipity

- recommendations based on community

membership, equivalently, topic distribution

Network-based recommendation

Using Topic Models for recommendations
● Input: a collection of documents (i.e. episode named-entities, episode

transcriptions, episode descriptions)

● Models: Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet

Process (HDP) implemented with tomotopy

● Output: Some topics that are given by a distribution of the words based

on how likely they occur in the topic

Using Topic Models for recommendations

● Example output of a topic model:
○ Topic A: Trump (2.9%), President (1.5%), Election (1.2%), Biden (1.1%), ..

○ Topic B: Football (1.1%), Season (0.7%), Player (07%), Manchester United (0.6%), ….

○ …

● Understanding of the topics requires human interpretation:
○ Topic A: “US Politics”

○ Topic B: “European Football”

○ …

● We can also obtain the topic distribution for each episode:
○ Episode 1: Topic A (10%), Topic B (0.5%), ….

○ ...

Using Topic Models for recommendations
Example recommendation:

0. Choose an embedding and what episode metadata to use

● (LDA with k=20 topics on episode descriptions)

1. What has the user listened to?

● Barca Blanugranes: Chatting about redemption for Coutinho,

Griezmann...

● Between the Links: Jon Jones Vacates, Future of 205, Frankie Edgar vs. ...

● MMA Fighting: Luke Rockhold explains why he's returning to fighting...

● Barca Blanugranes: A chat about Ronald Koeman's time at Everton...

Using Topic Models for recommendations
Example recommendation:

2. Combine the episode embeddings

● Used an exponential weighted average (and normalise)
○ Newer episodes get a larger weight

3. Compute the similarity between the combined episode embedding to other
episodes

● Used the Wasserstein distance

Using Topic Models for recommendations
Example recommendation:

1. The Ornstein & Chapman Podcast: Chelsea sack
Lampard - The Inside Story (WD = 0.002966)

2. Move the Sticks: Draft Scenarios for Teams Picking
3-5… (WD = 0.002969)

3. The Ringer NBA Show: The Trade Deadline
Extravaganza… (WD = 0.002987)

4. Why Always Us? A show about Manchester City:
Take The Shot! (WD = 0.003089)

5. The Odd Couple: Bucs Taking a Big Risk with Antonio
Brown (WD = 0.003094)

Using Topic Models for recommendations

Flexible approach:

● Options to use different embeddings

● Various ways to combine the user listened episodes

● Various ways to compare similarity

● Many possible extensions

○ Clustering on the episode embedding

○ Dimension reduction on the episode embeddings

Going Down a Rabbit Hole
● Recommend podcasts which pick up on something discussed in what you were

just listening to

Going Down a Rabbit Hole

Limitations
● Time is an important missing feature for inferring user intention/preference (duration

of listen + date and time) - a listener might want to listen to different genre depending on
the time of the day

● Transcripts for all the episodes

● Disambiguation of named entities vs. lack of information on frequency in transcript

● Niche areas themselves result in a spiral, need a way to get people out of that

Future Work (Directions)

Future Work: Other Features

Format Style of the Speaker

Speaker Diarization
Sentiment

Tone

Knowledge Graph -- Embedding
Future Work (Directions)

Approximate Nearest Neighbors

C
at

eg
or

y
R

an
ki

ng

Ranking in a category

Future Work (Directions)

USER

Action
(Response
to podcast)

Reward
(Recommendation)

Reinforcement Learning

User’s
Listen

History
t + 1

P1

P2

Pn

.

.

R
ecom

m
endations

t+1

RNN

Future Work: Evaluation

Held out episode
Et

Score for Et
from different

Recommender
systems

Score for random
episodes from

different
Recommender

systems

Compare the
statistics

Strategy 1: Comparing different Recommendation Systems

At time t:
episodes till t-1

Score for Et
from the

Recommender
system

Check the
scores of Et for

all t

Strategy 2: Evaluating a Recommendation system

Thanks for listening!
The Entale DSG Team:
● Ryan Chan
● Jayesh Choudhari
● John Fitzgerald
● Jev Gamper
● Erfan Loghmani
● Jamie McGowan
● Vanessa Pope
● Ilan Price
● Kirstin Roster
● Lizhi Zhang

Special thanks to Olek
and the Entale team for
their consistent support
throughout the challenge

References
● Speaker presenter style --

https://www.facebook.com/melaniewoodspeakingstyles/posts/2370882959673070/
● Tone: https://blog.inkforall.com/tone-words
● Sentiment:

https://medium.com/@sam_hames/four-reasons-sentiment-analysis-is-misinterpreted-4d9bb59b41b9
● Format: https://www.singlegrain.com/podcast/podcast-trends-2021/
● Ranking: https://www.topbots.com/netflix-movie-recommender-system-rework/
● ANN: https://sdjournal.org/annoy-approximate-nearest-neighbors-in-cpython/
● Knowledge Graph: https://docs.ampligraph.org/en/1.0.3/
● RNN: https://www.edureka.co/blog/recurrent-neural-networks/

https://www.facebook.com/melaniewoodspeakingstyles/posts/2370882959673070/
https://blog.inkforall.com/tone-words
https://medium.com/@sam_hames/four-reasons-sentiment-analysis-is-misinterpreted-4d9bb59b41b9
https://www.singlegrain.com/podcast/podcast-trends-2021/
https://www.topbots.com/netflix-movie-recommender-system-rework/
https://sdjournal.org/annoy-approximate-nearest-neighbors-in-cpython/
https://docs.ampligraph.org/en/1.0.3/

