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● The Challenge: Develop a podcast recommendation algorithm

● The Data

Recommender
User profile and/or 
recent episode they 

listened to

Podcast episodes 
the user would enjoy

… but also expand their horizons! 

Episodes:
● Title, show, episode description
● Transcription
● Named entities
● Category

Users:
● Episodes listened (small overlap with 

episode data) (1 year)
● Month of each listen
● Some show subscriptions (5 years)



Outline

- High level overview of approaches

- Different ways of representing and comparing podcasts
- Networks 
- Topic models 
- Pre-trained embeddings

- The Rabbit-hole recommender

- Evaluation and Limitations

- Future Work



Approach Overview
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Approach 1: “Distance”  based recommenders

Embed episodes 
into a graph or 

vector space

Recommend 
another episode 
that is “nearby”

Consider a user’s most recent listen Represent the user in the same “space” - e.g. 
average their listen history
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Approach 2: Modern “Collaborative Filtering”

Representations of 
both users and 
podcasts which 
jointly explain 

observed behaviour

User listens as 
indicators of 

user 
preferences

Use these to make 
recommendations 

about new podcasts 
for the users

Techniques in the pipeline: 

Matrix factorisation Neural collaborative filtering Convolutional matrix factorisation



Approach 3: The Rabbit Hole

Identify specific 
entities 

discussed in a 
podcast

Identify “candidates” 
for recommendation 
which focus in one of 

these entities

Sort these candidates 
according “similarity” 
with user preferences



Episode Representation and Similarity Modelling



One step neighbour Community structure

Network-based recommendation



Hierarchical Stochastic Block Models (hSBMs)

- nonparametric: infer the number of topics

- hierarchical clustering (topics): clustering

different resolution -> serendipity

- recommendations based on community 

membership, equivalently, topic distribution

Network-based recommendation





Using Topic Models for recommendations
● Input: a collection of documents (i.e. episode named-entities, episode 

transcriptions, episode descriptions)

● Models: Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet 

Process (HDP) implemented with tomotopy 

● Output: Some topics that are given by a distribution of the words based 

on how likely they occur in the topic



Using Topic Models for recommendations

● Example output of a topic model:
○ Topic A: Trump (2.9%), President (1.5%), Election (1.2%), Biden (1.1%), ..

○ Topic B: Football (1.1%), Season (0.7%), Player (07%), Manchester United (0.6%), ….

○ …

● Understanding of the topics requires human interpretation:
○ Topic A: “US Politics”

○ Topic B: “European Football”

○ …

● We can also obtain the topic distribution for each episode:
○ Episode 1: Topic A (10%), Topic B (0.5%), ….

○ ...



Using Topic Models for recommendations
Example recommendation: 

0. Choose an embedding and what episode metadata to use

● (LDA with k=20 topics on episode descriptions)

1.  What has the user listened to?

● Barca Blanugranes: Chatting about redemption for Coutinho, 

Griezmann...

● Between the Links: Jon Jones Vacates, Future of 205, Frankie Edgar vs. ...

● MMA Fighting: Luke Rockhold explains why he's returning to fighting...

● Barca Blanugranes: A chat about Ronald Koeman's time at Everton...



Using Topic Models for recommendations
Example recommendation: 

2. Combine the episode embeddings

● Used an exponential weighted average (and normalise)
○ Newer episodes get a larger weight

3. Compute the similarity between the combined episode embedding to other 
episodes

● Used the Wasserstein distance



Using Topic Models for recommendations
Example recommendation: 

1. The Ornstein & Chapman Podcast: Chelsea sack 
Lampard - The Inside Story (WD = 0.002966)

2. Move the Sticks: Draft Scenarios for Teams Picking 
3-5…  (WD = 0.002969)

3. The Ringer NBA Show:  The Trade Deadline 
Extravaganza… (WD = 0.002987)

4. Why Always Us? A show about Manchester City: 
Take The Shot! (WD = 0.003089)

5. The Odd Couple: Bucs Taking a Big Risk with Antonio 
Brown (WD = 0.003094)



Using Topic Models for recommendations

Flexible approach:

● Options to use different embeddings

● Various ways to combine the user listened episodes

● Various ways to compare similarity

● Many possible extensions

○ Clustering on the episode embedding

○ Dimension reduction on the episode embeddings



Going Down a Rabbit Hole
● Recommend podcasts which pick up on something discussed in what you were 

just listening to



Going Down a Rabbit Hole



Limitations
● Time is an important missing feature for inferring user intention/preference (duration 

of listen + date and time) - a listener might want to listen to different genre depending on 
the time of the day

● Transcripts for all the episodes

● Disambiguation of named entities vs.  lack of information on frequency in transcript

● Niche areas themselves result in a spiral, need a way to get people out of that



Future Work (Directions)



Future Work: Other Features

Format Style of the Speaker

Speaker Diarization
Sentiment

Tone



Knowledge Graph -- Embedding
Future Work (Directions)

Approximate Nearest Neighbors
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Future Work (Directions)
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Future Work: Evaluation

Held out episode
Et

Score for Et 
from different 

Recommender 
systems

Score for random 
episodes from 

different 
Recommender 

systems 

Compare the 
statistics

Strategy 1: Comparing different Recommendation Systems

At time t:
episodes till t-1

Score for Et 
from the 

Recommender 
system

Check the 
scores of Et for 

all t 

Strategy 2: Evaluating a Recommendation system



Thanks for listening!
The Entale DSG Team:
● Ryan Chan
● Jayesh Choudhari
● John Fitzgerald
● Jev Gamper
● Erfan Loghmani
● Jamie McGowan
● Vanessa Pope
● Ilan Price
● Kirstin Roster
● Lizhi Zhang

Special thanks to Olek 
and the Entale team for 
their consistent support 
throughout the challenge
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