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What is the Fusion problem?

Fusion Problem

® Target fusion density:

where each sub-posterior, f.(x), is a density representing one of the C
distributed inferences we wish to unify
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Introduction to Fusion methodologies

What is the Fusion problem?

Fusion Problem

® Target fusion density:

where each sub-posterior, f.(x), is a density representing one of the C
distributed inferences we wish to unify

® No general analytical approach
® Monte Carlo: assume we can sample x\9) ~ f.(x)
® Applications:

® Expert elicitation: combining views of multiple experts
® Big Data (by construction)

® Partitioning large datasets to make them more manageable

® |nference in privacy settings
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Fork-and-join

The fork-and-join approach:
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What is the Fusion problem?

Some Fork-and-Join methods

® Several fork-and-join methods have been developed (typically for Bayesian
inference for large dataset applications):
® Kernel density averaging (KDEMC) [Neiswanger et al., 2014]
® Weierstrass sampler (WRS) [Wang and Dunson, 2013]
® Consensus Monte Carlo (CMC) [Scott et al., 2016]
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What is the Fusion problem?

Some Fork-and-Join methods

® Several fork-and-join methods have been developed (typically for Bayesian
inference for large dataset applications):
® Kernel density averaging (KDEMC) [Neiswanger et al., 2014]
® Weierstrass sampler (WRS) [Wang and Dunson, 2013]
® Consensus Monte Carlo (CMC) [Scott et al., 2016]
® Generally the recombination is inexact and involve approximations

® CMC is exact if all sub-posteriors are Gaussian
® All theory is asymptotic in the number of observations

® However, Monte Carlo Fusion [Dai et al., 2019] (and subsequently Bayesian

Fusion [Dai et al., 2023]) is exact in the sense it targets the correct fusion
density
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Monte Carlo Fusion

An extended target density

Proposition

Suppose that p.(y|x(°)) is the transition density of a stochastic process with
stationary distribution f£2(x). The (C + 1)d-dimensional (fusion) density
proportional to the integrable function

g (x5, y) ﬁ {ff (<) e (v ”‘(C)> . M
c=1 :

admits the marginal density f for y.
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Monte Carlo Fusion

An extended target density

Proposition

Suppose that p.(y|x(°)) is the transition density of a stochastic process with
stationary distribution f2(x). The (C + 1)d-dimensional (fusion) density
proportional to the integrable function

g (xV,... X9y 11 {ff (x9) P (}x9) Ey)}
c=1 :

admits the marginal density f for y.

Main idea: If we can sample from g, then we can can obtain a draw from the
fusion density (y ~ f)
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An extended target density

® There are many possible choices for p.(y|x(<))

Let pc(y|x()) := pr.c(y|x(<)), the transition density of the d-dimensional
c=1

Xfc) from x(¢) to y for
C, for a pre-defined time T > 0 given by

operator over x)

(where Wt(c) is d-dimensional Brownian motion and V is the gradient
Has stationary distribution £2(x)

2006; Pollock et al., 2016]

Sample paths of DL diffusions can be simulated exactly using Path Space
Rejection Sampling / Exact Algorithm methodology [Beskos et al., 2005,
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Monte Carlo Fusion

An extended target density

® There are many possible choices for p.(y|x())
* Let pc(y|x(9) := pr.c(y|x()), the transition density of the d-dimensional

(double) Langevin (DL) diffusion processes Xt(c) from x(¢) to y for
c=1,...,C, for a pre-defined time T > 0 given by

dX'9 = Vliog f. ( ”) dt +dw®,

(where W is d-dimensional Brownian motion and V is the gradient
operator over x)
® Has stationary distribution f2(x)
® Sample paths of DL diffusions can be simulated exactly using Path Space
Rejection Sampling / Exact Algorithm methodology [Beskos et al., 2005,
2006; Pollock et al., 2016]
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Constructing a rejection sampler for g

® Extended target density:

c

g (X(l), N ,X(C),y) occljl [fz <x(c)) pre <y’x(c)> 1
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Monte Carlo Fusion

Constructing a rejection sampler for g

® Extended target density:

g (X(l),...,x(c)»y> x f[ [3 ("(C)> T (y’x(C)) ' fcg}')}

® Consider the proposal density h for the extended target g:

M (O s © CCelly—x|?
h(x seeey X ,y)xH[fc(x )}~exp T

- _ 1 C
® x= c Ec:l X(C)
® T is an arbitrary positive constant
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Constructing a rejection sampler for g

® Simulation from h is easy:

h (x(l), o 7x(C),y> x f[ [fc (x(c))] - exp

CCelly—x|°
1 2T
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Constructing a rejection sampler for g

® Simulation from h is easy:

h (x(l), o 7x(C),y) x f[ {fc (x(c))] - exp

=12
(_cww—xu)
e 2T
1. Simulate x(¢) ~ f.(x) independently

DA g2
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Monte Carlo Fusion

Constructing a rejection sampler for g

® Simulation from h is easy:

h (x(l), e ,x(c),y> x f[ {fc (X(C)>] - exp (

c=1

1. Simulate x(¢) ~ f.(x) independently
2. Simulate y ~ NVy(x, L14)
® This value y ends up being our proposal for f

=12
_Celly =]

2T

)
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Rejection sampling - acceptance probability

® Acceptance probability:

g(x(1)7 ot 7X(C)7y)
h(x(1)7 AR ’X(C)7y) - po ' pl
where

{

where W denotes the law of C independent Brownian bridges
x{ with X§9 = x(©) and X!V = y
with choice of

as T increases, pg increases, but this results in
p1 to be small (might typically decrease exponentially with T)

«0O» «F)r « >
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Monte Carlo Fusion

Rejection sampling - acceptance probability

® Acceptance probability:

g(xM, .. x(©),
h(x(l) x(C)., ) X pPo - pP1
where
o=, P=LnC x|
{Pl = Ew <HCC:1 [eXP {_ foT (¢C (XT(C)> N q)‘:) dt}D

where W denotes the law of C independent Brownian bridges
XD, X with X9 = x(©) and X1 = y
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Monte Carlo Fusion

Rejection sampling - acceptance probability

® Acceptance probability:

g(x(l) ..... x(C),
h(x(1)7 x(O), X po - P1
where
{Po =e Cz; , o2 = %ZC IHX(C)*)_(H2
p1 = Eg <HC 1 [exp{ I (¢C (Xt(C)> _ ¢C> dt}D

where W denotes the law of C independent Brownian bridges
X® X with X8O = x(O) and X1 —

® Trade-off with choice of T: as T increases, pg increases, but this results in
p1 to be small (might typically decrease exponentially with T)



Divide-and-Conquer Fusion: Methods for unifying distributed analyses

p1 Acceptance Probability

n (ol L)

* 6e(x) = 3 (IV log £(x)|I” + Alog fe(x))

where

DA™ 11/
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Monte Carlo Fusion

p1 Acceptance Probability

st 1))

* 6c(x) = 1 (IIV Iog £(x)|P + Alog £(x))
® &, are constants such that for all x, ¢.(x) > &, for c € {1,...,C}
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Monte Carlo Fusion

p1 Acceptance Probability

st 1))

* 6c(x) = 1 (IIV Iog £(x)|P + Alog £(x))
® &, are constants such that for all x, ¢.(x) > &, for c € {1,...,C}

® Events of probability p; can be simulated using Poisson thinning and
methodology called Path-space Rejection Sampling (PSRS) or the Exact
Algorithm (Beskos et al. [2005], Beskos et al. [2006], Pollock et al. [2016])
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Monte Carlo Fusion

Monte Carlo Fusion - Interpretation

® Correct a simple average x of sub-posterior values to obtain samples for f

x4 -

X -

x® -

x@ o

x5 -

Time
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Monte Carlo Fusion

Monte Carlo Fusion - Interpretation

® Correct a simple average x of sub-posterior values to obtain samples for 1

® The correction comes by simulating y from a Gaussian centred at X, and
accepting those samples with probability proportional to pg - p1

X4 -

X -

x® -

x@ -

x5 -

Time
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Monte Carlo Fusion - Summary

® Aim: Sample from g (admits marginal density f for y)
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Monte Carlo Fusion - Summary

® Aim: Sample from g (admits marginal density f for y)
® Proposal h for g:

C

h (x(l), o ,x(c),y) 0e H {fc <x(c))] - exp

CClly—x|°
1 2T
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Monte Carlo Fusion

Monte Carlo Fusion - Summary

® Aim: Sample from g (admits marginal density f for y)
® Proposal h for g:

O O ) o TT £ (x© C-lly - %P
h(x R ,y)xH[fc(x )}-exp — T

c=1

® Accept y as a draw from fusion density f with probability:

g(X(1)7 ctt 7x(C)’y

)
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Limitations of Monte Carlo Fusion

Limitations of Monte Carlo Fusion

® Robustness: there is a lack of robustness when:

® sub-posterior correlation increases
® C increases

® d increases

® combining conflicting sub-posteriors
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Limitations of Monte Carlo Fusion

Limitations of Monte Carlo Fusion

® Robustness: there is a lack of robustness when:
® sub-posterior correlation increases
® C increases
® d increases
® combining conflicting sub-posteriors
® Aim: To construct a fusion algorithm / framework to alleviate some of
these limitations (see Dai et al. [2023]; Chan et al. [2021, 2023] for full
details)
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Divide-and-Conquer Generalised Monte Carlo Fusion

The Generalised Monte Carlo Fusion (GMCF) approach

Problem: Scalability with sub-posterior correlation

® Recall we have the flexibility to choose different p. (transition density of
stochastic process with £2 invariant density)
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Divide-and-Conquer Generalised Monte Carlo Fusion

The Generalised Monte Carlo Fusion (GMCF) approach

Problem: Scalability with sub-posterior correlation
® Recall we have the flexibility to choose different p. (transition density of
stochastic process with £2 invariant density)
® Now, we choose p. to be the transition density of the d-dimensional
(double) Langevin (DL) diffusion processes Xt(c) with covariance matrix, A,
from x(9) to y for c =1,..., C, over [0, T] given by

dX'© = A Viogf. (xfc)) dt + AV2aw,
® Has stationary density proportional to f2(x)

® A. is the preconditioning matrix (enables incorporation of covariance /
correlation structure into our algorithm)
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Divide-and-Conquer Generalised Monte Carlo Fusion

Constructing an importance sampler

® Switch to importance sampler for the extended target density
g(xM,... x(9, y):
® Rejection sampling can be wasteful
® We will subsequently embed this approach within a SMC algorithm
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Divide-and-Conquer Generalised Monte Carlo Fusion

Constructing an importance sampler

® Switch to importance sampler for the extended target density
g(x®,.. x(9,y):
® Rejection sampling can be wasteful
® We will subsequently embed this approach within a SMC algorithm

® Consider an alternative proposal density h for the extended target g:

h (x(l),...,x(c),y) ~ ﬁl [fc (x(d)} ,exp{(y - i)T;\;l(y ’?)},

where

-1

C C C
%= (ZAC1> (Z;I\Clx(c)>, At ::2/\;1.
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Divide-and-Conquer Generalised Monte Carlo Fusion

Importance weights

® |Importance weights:

where

I #—xNTAL(x—x()
po = exp{—ZC:1 (FxT)TA, (xx)

1= [l Ewy, {GXP{ Jo ( C( ) - ¢°> dt}]

where ¢c(x) := 3 (Vlog f(x)TAV log fo(x) + Tr(A:V? log f(x))), with
Wy, denoting the law of a Brownian bridge {X (<), t € [0, T]} with
Xéc) = x(9), Xg-c) := y and covariance matrix A
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Divide-and-Conquer Generalised Monte Carlo Fusion

Scalability with sub-posterior correlation

In our Generalised Monte Carlo Fusion [Chan et al., 2021, Section 2] setting:

® Able to incorporate covariance / correlation information within our
proposals and through p. and h (in MCF A, =14 forc=1,...,C)
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Divide-and-Conquer Generalised Monte Carlo Fusion

Scalability with sub-posterior correlation

In our Generalised Monte Carlo Fusion [Chan et al., 2021, Section 2] setting:
® Able to incorporate covariance / correlation information within our
proposals and through p. and h (in MCF A, =14 forc=1,...,C)

® Unfortunately no longer have i.i.d. draws from f but now have weighted

samples to approximate f (later embed within divide-and-conquer SMC
[Lindsten et al., 2017] framework)
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

Problem: Scalability with C

The (Generalised) Monte Carlo Fusion algorithm implies a fork-and-join

approach:

fl f2 f3 fC’—2 fC—l fC

I

\
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

Problem: Scalability with C

The (Generalised) Monte Carlo Fusion algorithm implies a fork-and-join

approach:

fl f2 f3 fC’—2 fC—l fC

I

\

® Not necessarily the most efficient way to combine sub-posteriors
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

Problem: Scalability with C

The (Generalised) Monte Carlo Fusion algorithm implies a fork-and-join

approach:

fl f2 fS fC—Q fC—l fC

I

\

® Not necessarily the most efficient way to combine sub-posteriors
® For MCF, acceptance probabilities typically decrease geometrically with C
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

® Solution: Divide-and-Conquer Monte Carlo Fusion [Chan et al., 2021,
Section 3]

. -
/ N I
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

® Solution: Divide-and-Conquer Monte Carlo Fusion [Chan et al., 2021,
Section 3]
® We could perform fusion in a proper divide-and-conquer framework
® j.e. a fork-and-join method is recursively applied

. -

/ \ ]Hij:ll fff
fife feoife -

. | o

)
fi fo foot fe fi fa cee fo-1 fe
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

® Solution: Divide-and-Conquer Monte Carlo Fusion [Chan et al., 2021,
Section 3]
® We could perform fusion in a proper divide-and-conquer framework
® j.e. a fork-and-join method is recursively applied

® Two possible choices are balanced-binary (left) and progressive (right) trees

f

o -
( . |

fife o Joaife -
fl/ f[ e fj—l \fC f/ fl/er
1 e e Je- fe

Note: Other trees are possible
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Divide-and-Conquer Generalised Bayesian Fusion

Generalised Bayesian Fusion

Problem: Robustness to conflicting sub-posteriors
® Generalising the Bayesian Fusion approach of Dai et al. [2023]
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Divide-and-Conquer Generalised Bayesian Fusion

Generalised Bayesian Fusion

Problem: Robustness to conflicting sub-posteriors
® Generalising the Bayesian Fusion approach of Dai et al. [2023]
® Recall choosing a value T > 0 for MCF can be hard:
® Want to make T large so that po is large - but this makes p; smaller (since
we have to simulate a diffusion over a longer time horizon T)

1.8 3% ¢
g 585
341 £ 8
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N £l
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Divide-and-Conquer Generalised Bayesian Fusion

Generalised Bayesian Fusion

Problem: Robustness to conflicting sub-posteriors
® Generalising the Bayesian Fusion approach of Dai et al. [2023]
® Recall choosing a value T > 0 for MCF can be hard:
® Want to make T large so that po is large - but this makes p; smaller (since
we have to simulate a diffusion over a longer time horizon T)
® Solution: Introduce temporal partition of T
® Have the flexibility to choose T large enough for initialisation, while being
able to have small intervals in the partition

%yﬁ

N Lo
1.8 3% ¢
g 585
341 £ 8
R avd
N £l
i%?

&
i
=

Time
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Examples

® We compare our methodology (Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) [Chan et al., 2023]) with the approximate
methodologies KDEMC [Neiswanger et al., 2014], WRS [Wang and
Dunson, 2013] and CMC [Scott et al., 2016]
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Examples

® We compare our methodology (Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) [Chan et al., 2023]) with the approximate
methodologies KDEMC [Neiswanger et al., 2014], WRS [Wang and
Dunson, 2013] and CMC [Scott et al., 2016]

® To compare methods we calculate the integrated absolute distance metric
14y
IAD = - z;/ ’f(xj) — f(x;)| dx; € [0,1]
j=

where f(x;) is the marginal density for x; based on the method applied
(computed using a kernel density estimate) and f(x;) is target marginal
density

® Gives a measure of how accurate our samples are to our target (lower is
better)
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Examples

Logistic regression - simulated data

Integrated Absolute Distance

® Simulated data example with n = 1000 and d =5
® Small data size means that large data assumptions will fail

® We split the data into C = 4,8,16,32,64 and apply D&C-GBF (using a

balanced binary tree approach)

] -e WRS

-0 D&C-GBF (regular mesh)
~X- D&C-GBF (adaptive mesh)
—e- GBF (adaptive mesh)

-+ CcMC

—A- KDEMC

e T T T T m e e B e

T T T T T
2 3 a 5 6

log(C, 2)

log(Time elapsed in seconds, 2)

2 0 2 4 6 8 10 12 14 16 18

"

-

—e— GBF (adaptive mesh) — L
-+ CMC o jid

D&C-GBF (regular mesh)
-%- D&C-GBF (adaptive mesh)

- KDEMC e
-e WRS o e
JURPNPRE
*_,__._..--*“ _—a
——a——
——a—
e ——a——
a— =
-0
———o T
—emor T -t
im0t T PO
D -
e -
-
T T T T T
2 3 4 5 6
log(C, 2)
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Examples

Logistic regression - nycflights13

Integrated Absolute Distance

® Applying logistic regression model to the nycflights13 dataset

[Wickham, 2021] to predict the binary outcome of arrival-delay:
n = 327346 and d =21

We split the data into C = 4,8,16,32,64,128 and apply D&C-GBF (using
a balanced binary tree approach)

-0 D&C-GBF (regular mesh) & ;: -0 D&C-GBF (regular mesh)
- D&C-GBF (adaptive mesh) . 871 -x- D&C-GBF (adaptive mesh)
-+ CMC g =] -+ cMc _e
-A- KDEMC a € .1 -A- KDEMC =TT
1 -e WRs / 8 %] -e WRs JEPRPN Tl
A, / & 77 R
//\\ / £ ale" s
/ 1 —a—
/ \ / 2 2] e
/ S , a4 __—a——
V: N .0 g§°] am———" .
/ > s ed 0- " -
- o 1 et T T +
e [P + g-1 - e -
a— i 2o Ead - © gemm T
—oins T B 1y - =
PRSRETE S Hokjuhirt St IPRNITIEPRIT SRR 3 -1+
2 3 4 5 6 7 2 3 6 7

s s
log(C, 2) log(C, 2)
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Concluding remarks and future directions

Ongoing research questions

® Further reducing the computational cost of the Fusion approach
® Exactness comes at a cost
® Practical implementation considerations for specific applications:

® Big data setting: evaluating ¢. has O(m.) cost - can perhaps employ
sub-sampling methods to reduce this cost

® Confidential fusion (Con-fusion): where sharing information/data between
cores is not permitted

® Scalability with dimension

® Performance with regards to dimension has improved since MCF, but not
been explicitly addressed
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Concluding remarks and future directions
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