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Introduction to Fusion methodologies

What is the Fusion problem?

Fusion Problem

• Target fusion density:

f (x) ∝
C∏

c=1

fc(x)

where each sub-posterior, fc(x), is a density representing one of the C
distributed inferences we wish to unify

• No general analytical approach
• Monte Carlo: assume we can sample x (c) ∼ fc(x)

• Applications:
• Expert elicitation: combining views of multiple experts
• Big Data (by construction)

• Partitioning large datasets to make them more manageable

• Inference in privacy settings
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Introduction to Fusion methodologies

What is the Fusion problem?

Fork-and-join

The fork-and-join approach:
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Introduction to Fusion methodologies

What is the Fusion problem?

Some Fork-and-Join methods

• Several fork-and-join methods have been developed (typically for Bayesian
inference for large dataset applications):

• Kernel density averaging (KDEMC) [Neiswanger et al., 2014]
• Weierstrass sampler (WRS) [Wang and Dunson, 2013]
• Consensus Monte Carlo (CMC) [Scott et al., 2016]

• Generally the recombination is inexact and involve approximations
• CMC is exact if all sub-posteriors are Gaussian
• All theory is asymptotic in the number of observations

• However, Monte Carlo Fusion [Dai et al., 2019] (and subsequently Bayesian
Fusion [Dai et al., 2023]) is exact in the sense it targets the correct fusion
density
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Introduction to Fusion methodologies

Monte Carlo Fusion

An extended target density

Proposition
Suppose that pc(y |x (c)) is the transition density of a stochastic process with
stationary distribution f 2c (x). The (C + 1)d-dimensional (fusion) density
proportional to the integrable function

g
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
f 2c

(
x (c)

)
· pc

(
y
∣∣∣x (c)

)
· 1

fc (y)

]
admits the marginal density f for y .

Main idea: If we can sample from g , then we can can obtain a draw from the
fusion density (y ∼ f )
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Introduction to Fusion methodologies

Monte Carlo Fusion

An extended target density

• There are many possible choices for pc(y |x (c))

• Let pc(y |x (c)) := pT ,c(y |x (c)), the transition density of the d-dimensional

(double) Langevin (DL) diffusion processes X (c)
t from x (c) to y for

c = 1, . . . ,C , for a pre-defined time T > 0 given by

dX (c)
t = ∇ log fc

(
X (c)

t

)
dt + dW (c)

t ,

(where W (c)
t is d-dimensional Brownian motion and ∇ is the gradient

operator over x)
• Has stationary distribution f 2c (x)
• Sample paths of DL diffusions can be simulated exactly using Path Space

Rejection Sampling / Exact Algorithm methodology [Beskos et al., 2005,
2006; Pollock et al., 2016]
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Introduction to Fusion methodologies

Monte Carlo Fusion

Constructing a rejection sampler for g

• Extended target density:

g
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
f 2c

(
x (c)

)
· pT ,c

(
y
∣∣∣x (c)

)
· 1

fc (y)

]

• Consider the proposal density h for the extended target g :

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

(
−C · ∥y − x̄∥2

2T

)

• x̄ = 1
C

∑C
c=1 x (c)

• T is an arbitrary positive constant
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Introduction to Fusion methodologies

Monte Carlo Fusion

Constructing a rejection sampler for g

• Simulation from h is easy:

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

(
−C · ∥y − x̄∥2

2T

)

1. Simulate x (c) ∼ fc(x) independently
2. Simulate y ∼ Nd(x̄ , T

C Id)
• This value y ends up being our proposal for f
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Introduction to Fusion methodologies

Monte Carlo Fusion

Rejection sampling - acceptance probability

• Acceptance probability:

g(x (1), . . . , x (C), y)
h(x (1), . . . , x (C), y)

∝ ρ0 · ρ1

where{
ρ0 := e−

Cσ2

2T , σ2 = 1
C

∑C
c=1

∥∥x (c) − x̄
∥∥2

ρ1 := EW̄

(∏C
c=1

[
exp
{
−
∫ T
0

(
ϕc

(
X (c)

t

)
−Φc

)
dt
}])

where W̄ denotes the law of C independent Brownian bridges

X (1)
t , . . . ,X (C)

t with X (c)
0 = x (c) and X (c)

T = y
• Trade-off with choice of T : as T increases, ρ0 increases, but this results in
ρ1 to be small (might typically decrease exponentially with T )
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Introduction to Fusion methodologies

Monte Carlo Fusion

ρ1 Acceptance Probability

ρ1 := EW̄

(
C∏

c=1

[
exp

{
−
∫ T

0

(
ϕc

(
X (c)

t

)
−Φc

)
dt

}])
where

• ϕc(x) = 1
2

(
∥∇ log fc(x)∥2 +∆ log fc(x)

)
• Φc are constants such that for all x , ϕc(x) ≥ Φc for c ∈ {1, . . . ,C}
• Events of probability ρ1 can be simulated using Poisson thinning and
methodology called Path-space Rejection Sampling (PSRS) or the Exact
Algorithm (Beskos et al. [2005], Beskos et al. [2006], Pollock et al. [2016])
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Introduction to Fusion methodologies

Monte Carlo Fusion

Monte Carlo Fusion - Interpretation

• Correct a simple average x̄ of sub-posterior values to obtain samples for f

• The correction comes by simulating y from a Gaussian centred at x̄ , and
accepting those samples with probability proportional to ρ0 · ρ1

0 T

x
(5)

x
(2)

x
(3)

x
(1)

x
(4)

y

Time

X
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Introduction to Fusion methodologies

Monte Carlo Fusion

Monte Carlo Fusion - Summary

• Aim: Sample from g (admits marginal density f for y)
• Proposal h for g :

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

(
−C · ∥y − x̄∥2

2T

)

• Accept y as a draw from fusion density f with probability:

g(x (1), . . . , x (C), y)
h(x (1), . . . , x (C), y)

∝ ρ0 · ρ1
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Introduction to Fusion methodologies

Limitations of Monte Carlo Fusion

Limitations of Monte Carlo Fusion

• Robustness: there is a lack of robustness when:
• sub-posterior correlation increases
• C increases
• d increases
• combining conflicting sub-posteriors

• Aim: To construct a fusion algorithm / framework to alleviate some of
these limitations (see Dai et al. [2023]; Chan et al. [2021, 2023] for full
details)
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Divide-and-Conquer Generalised Monte Carlo Fusion

The Generalised Monte Carlo Fusion (GMCF) approach

Problem: Scalability with sub-posterior correlation

• Recall we have the flexibility to choose different pc (transition density of
stochastic process with f 2c invariant density)

• Now, we choose pc to be the transition density of the d-dimensional

(double) Langevin (DL) diffusion processes X (c)
t with covariance matrix, Λc

from x (c) to y for c = 1, . . . ,C , over [0,T ] given by

dX (c)
t = Λc∇ log fc

(
X (c)

t

)
dt + Λ1/2

c dW (c)
t ,

• Has stationary density proportional to f 2c (x)
• Λc is the preconditioning matrix (enables incorporation of covariance /

correlation structure into our algorithm)
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Divide-and-Conquer Generalised Monte Carlo Fusion

Constructing an importance sampler

• Switch to importance sampler for the extended target density
g(x (1), . . . , x (C), y):

• Rejection sampling can be wasteful
• We will subsequently embed this approach within a SMC algorithm

• Consider an alternative proposal density h for the extended target g :

h
(
x (1), . . . , x (C), y

)
∝

C∏
c=1

[
fc
(
x (c)

)]
· exp

{
− (y − x̃)⊺Λ−1(y − x̃)

2T

}
,

where

x̃ :=

(
C∑

c=1

Λ−1
c

)−1( C∑
c=1

Λ−1
c x (c)

)
, Λ−1 :=

C∑
c=1

Λ−1
c .
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Divide-and-Conquer Generalised Monte Carlo Fusion

Importance weights

• Importance weights:

g(x (1), . . . , x (C), y)
h(x (1), . . . , x (C), y)

∝ ρ0 · ρ1

where ρ0 := exp
{
−
∑C

c=1
(x̃−x (c))⊺Λ−1

c (x̃−x (c))
2T

}
ρ1 :=

∏C
c=1 EWΛc

[
exp

{
−
∫ T

0

(
ϕc

(
X (c)

t

)
−Φc

)
dt
}]

where ϕc(x) := 1
2

(
∇ log fc(x)⊺Λc∇ log fc(x) + Tr

(
Λc∇2 log fc(x)

))
, with

WΛc denoting the law of a Brownian bridge {X (c)
t , t ∈ [0,T ]} with

X (c)
0 := x (c), X (c)

T := y and covariance matrix Λc
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Divide-and-Conquer Generalised Monte Carlo Fusion

Scalability with sub-posterior correlation

In our Generalised Monte Carlo Fusion [Chan et al., 2021, Section 2] setting:

• Able to incorporate covariance / correlation information within our
proposals and through pc and h (in MCF Λc = Id for c = 1, . . . ,C )

• Unfortunately no longer have i.i.d. draws from f but now have weighted
samples to approximate f (later embed within divide-and-conquer SMC
[Lindsten et al., 2017] framework)
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

Problem: Scalability with C

The (Generalised) Monte Carlo Fusion algorithm implies a fork-and-join
approach:

• Not necessarily the most efficient way to combine sub-posteriors

• For MCF, acceptance probabilities typically decrease geometrically with C
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Divide-and-Conquer Generalised Monte Carlo Fusion

Divide-and-Conquer Monte Carlo Fusion

• Solution: Divide-and-Conquer Monte Carlo Fusion [Chan et al., 2021,
Section 3]

• We could perform fusion in a proper divide-and-conquer framework
• i.e. a fork-and-join method is recursively applied

• Two possible choices are balanced-binary (left) and progressive (right) trees

Note: Other trees are possible
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Divide-and-Conquer Generalised Bayesian Fusion

Generalised Bayesian Fusion

Problem: Robustness to conflicting sub-posteriors
• Generalising the Bayesian Fusion approach of Dai et al. [2023]
• Recall choosing a value T > 0 for MCF can be hard:

• Want to make T large so that ρ0 is large - but this makes ρ1 smaller (since
we have to simulate a diffusion over a longer time horizon T )

• Solution: Introduce temporal partition of T
• Have the flexibility to choose T large enough for initialisation, while being

able to have small intervals in the partition

t0 tnt1 t2 ... tn−1

x0

(5)

x0

(2)

x0

(3)

x0

(1)

x0

(4)

y

Time

X
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Examples

Examples

• We compare our methodology (Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) [Chan et al., 2023]) with the approximate
methodologies KDEMC [Neiswanger et al., 2014], WRS [Wang and
Dunson, 2013] and CMC [Scott et al., 2016]

• To compare methods we calculate the integrated absolute distance metric

IAD =
1

2d

d∑
j=1

∫ ∣∣∣f̂ (xj)− f (xj)
∣∣∣ dxj ∈ [0, 1]

where f̂ (xj) is the marginal density for xj based on the method applied
(computed using a kernel density estimate) and f (xj) is target marginal
density

• Gives a measure of how accurate our samples are to our target (lower is
better)
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Examples

Logistic regression - simulated data

• Simulated data example with n = 1000 and d = 5
• Small data size means that large data assumptions will fail

• We split the data into C = 4, 8, 16, 32, 64 and apply D&C-GBF (using a
balanced binary tree approach)
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Examples

Logistic regression - nycflights13

• Applying logistic regression model to the nycflights13 dataset
[Wickham, 2021] to predict the binary outcome of arrival-delay:
n = 327346 and d = 21

• We split the data into C = 4, 8, 16, 32, 64, 128 and apply D&C-GBF (using
a balanced binary tree approach)
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Concluding remarks and future directions

Ongoing research questions

• Further reducing the computational cost of the Fusion approach
• Exactness comes at a cost

• Practical implementation considerations for specific applications:
• Big data setting: evaluating ϕc has O(mc) cost - can perhaps employ

sub-sampling methods to reduce this cost
• Confidential fusion (Con-fusion): where sharing information/data between

cores is not permitted

• Scalability with dimension
• Performance with regards to dimension has improved since MCF, but not

been explicitly addressed
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Sequential Monte Carlo. Journal of Computational and Graphical Statistics, 26(2):445–458.

Neiswanger, W., Wang, C., and Xing, E. P. (2014). Asymptotically Exact, Embarrassingly Parallel MCMC. In Proceedings of the Thirtieth Conference
on Uncertainty in Artificial Intelligence, UAI’14, page 623–632, Arlington, Virginia, USA. AUAI Press.

Pollock, M., Johansen, A. M., Roberts, G. O., et al. (2016). On the exact and ε-strong simulation of (jump) diffusions. Bernoulli, 22(2):794–856.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch, R. E. (2016). Bayes and Big Data: The Consensus Monte
Carlo Algorithm. International Journal of Management Science and Engineering Management, 11(2):78–88.

Wang, X. and Dunson, D. B. (2013). Parallelizing MCMC via Weierstrass Sampler. Statistics e-print 1312.4605, arXiv.

Wickham, H. (2021). nycflights13: Flights that Departed NYC in 2013.


	Introduction to Fusion methodologies
	What is the Fusion problem?
	Monte Carlo Fusion
	Limitations of Monte Carlo Fusion

	Divide-and-Conquer Generalised Monte Carlo Fusion
	Divide-and-Conquer Generalised Bayesian Fusion
	Examples
	Concluding remarks and future directions
	References

