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Divide-and-conquer paradigm

We wish to carry out inferences based on subsets of data and then
combine inferences. But why?

® Big Data
® Inference under privacy settings

e Combining views of multiple experts on a topic
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Fusion Problem

Target of interest:

C
f(x) o fu(x) - fe(x) = [ ] felx)

where C is the number of cores / experts and f. are sub-posteriors

® Many useful methods exist, but all involve approximation, e.g.
Consensus Monte Carlo (Scott et al., 2016)
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The \/f1f Algorithm

Rejection sampler for f(x) o v/fi 1

Consider d-dimensional target density:

f(x) o< Vh(x) - f2(x)

Interested in expectations of the form:

E /ealh(X)] = E 75 [h(X)]
= /h(x)- f(x) - h(x) dx
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We can construct a rejection sampler, since:

B elh(0) = [ hx)- VAR B(x) dx
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'—A rejection sampler for f(x) < \/ff
The \/f1f Algorithm

Rejection sampler for f(x) o v/fi 1

We can construct a rejection sampler, since:

B elh(0) = [ hx)- VAR B(x) dx
=/h~m-M~[“"1dx

fiVh h+h
Jo L 16 o] o

where x V'y = max{x, y}
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'—A rejection sampler for f(x) < \/ff
The \/f1f Algorithm

Rejection sampler for f(x) o v/fi 1

Therefore,

Ef[h(X)] : / -V h(x) - h(x) dx

A(X) - f(X)} [ﬂ(X)\/ﬁ(X)”
f(X) Vv H(X) A (X) + f(X)

= En+s [h(X) ’ [
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'—A rejection sampler for f(x) < \/ff
The \/f1f Algorithm

Rejection sampler for f(x) o v/fi 1

Therefore,

Er[h(X)] : / ) VAKX B(x) dx

A(X) - B(X)) TAX)V H(X
= Erv [H(X) [ fl(lx) TR0 ) [ﬂng))i éEX))”

= Eg [h(X) - 1(X) - p2(X)] (1)

where x V' y = max{x, y}, p1(X) = % € [0,1] and

pa(X) = YESIES € [0.1]

(X)vh(X
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'—A rejection sampler for f(x) < \/ff
The \/f1f Algorithm

Rejection sampler for f(x) o v/fi 1

Result: a rejection sampler for f & +/fif> with proposal f; 4+ f> and
acceptance probability:

VAX) - B(X)

P(X)- pa(X) = YE TS (2)
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The algorithm for simulating from f o +/fif» proceeds as follows:
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The v/fif, Algorithm

The algorithm for simulating from f o +/fif» proceeds as follows:
1. Simulate X ~ 1 + £

2. Accept X with probability pi(X) - p2(X) =
return to Step 1

f(X)-R(X)

A +R(X) ! else
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'—A rejection sampler for f(x) < \/ff
The \/f1f Algorithm

The v/fif, Algorithm

The algorithm for simulating from f o +/fif» proceeds as follows:
1. Simulate X ~ 1 + £

2. Accept X with probability pi(X) - p2(X) =
return to Step 1

f(X)-R(X)

A +R(X) ! else

Note: can target f(x) o fif; by simply simulating from £2 and £?
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'—A rejection sampler for f(x) < \/ff

Example

A simple toy example

Consider f o< \/fifp, where i ~ N(0,1) and £, ~ N(4,2).
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If 1 and £, are unnormalised, then simulation from fi + £ is
non-trivial
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'—A rejection sampler for f(x) oc fi + f»

Case where f; and f, are unnormalised

If 1 and £, are unnormalised, then simulation from fi + £ is
non-trivial -

Suppose y1 ~ fi(y) and y» ~ f(y). Let Ui, Uz, U3 id U0, 1] are
independent UJ0, 1] variables. Define the following events:

F1={U1 < fo(y1)/H(»1)}
Fa = {2 < fi(y2)/f2(y2)}
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'—A rejection sampler for f(x) oc fi + f»

Case where f; and f, are unnormalised

Define y* and a 0 — 1 indicator / as

Yy =wy,1=1) if.7:-1ﬂ.7'—20{U3§%} is true;
(Y =y,l=1) if F1 N Fon{Us < 1} is true;
" N=qW =xnl1=1) if F1NFn{Us <1} is true;
(y* =yl =1) if F1NFoN{Us > 1} is true;
((y*=-1=0) otherwise

(3)
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'—A rejection sampler for f(x) oc fi + f»

Case where f; and f, are unnormalised

Define y* and a 0 — 1 indicator / as

Yy =wy,1=1) if.7:-1ﬂ.7'—20{U3§%} is true;
(Y =y,l=1) if F1 N Fon{Us < 1} is true;
" N=qW =xnl1=1) if F1NFn{Us <1} is true;
(y* =yl =1) if F1NFoN{Us > 1} is true;
((y*=-1=0) otherwise
Lemma (3)

Conditional on | =1, y* follows the distribution with density
proportional to fi(y) + f2(y).
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Example

Example

(fill in example for Bayesian Logistic Regression with 7 coefficients)
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Extending to more than 2 sub-posteriors

We can adopt a hierarchical approach to fusion, e.g. for
f o< hiffzfa:
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Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f o« f1f, as
follows:
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Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f o« f1f, as
follows:
1. Simulate X ~ 1 + f»
2. With probability p1(X) = % continue, else
return to Step 1
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Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f o« f1f, as
follows:
1. Simulate X ~ 1 + f»
2. With probability p1(X) = % continue, else
return to Step 1

3. With probability p2(X) = % accept X as a

sample from f, else return to Step 1
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‘—Problems and ongoing work
C

onflicting sub-posteriors

Problem of conflicting sub-posteriors
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Problem of conflicting sub-posteriors
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‘—Problems and ongoing work
L

arge data-sizes

Problem of large data-sizes

Algorithm has O(n) per iteration cost
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Problem of large data-sizes

Algorithm has O(n) per iteration cost
Looking to use unbiased estimators for the acceptance probability,
since:

V(X)) - R(X)

A (X) + R(X)

e e
VAR A | AX) + HX)

p1(X) - p2(X) =
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Conclusion and ongoing work

® We've developed a simple rejection sampling algorithm that
allows for perfect simulation from f o v/fif> by means of
simulating from f; and £,
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‘— Conclusion

Conclusion and ongoing work

® We've developed a simple rejection sampling algorithm that
allows for perfect simulation from f o v/fif> by means of
simulating from f; and £,

® However, currently is only useful for small examples
® There is ongoing work on Monte Carlo Fusion (which will be
spoken about in the next talk by Gareth), which is more
suitable for harder cases
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Conclusion
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