
1/20

Fusion without diffusions

Fusion without diffusions
Ryan Chan

Murray Pollock 1, Gareth Roberts 1, Hongsheng Dai 2

1University of Warwick

2University of Essex

24 March, 2020

2/20

Fusion without diffusions

Outline

Divide-and-conquer paradigm
Fusion Problem

A rejection sampler for f (x) ∝
√
f1f2

The
√
f1f2 Algorithm

Example

A rejection sampler for f (x) ∝ f1 + f2
Example

Extending to more than 2 sub-posteriors

Problems and ongoing work
Conflicting sub-posteriors
Large data-sizes

Conclusion

3/20

Fusion without diffusions

Divide-and-conquer paradigm

Divide-and-conquer paradigm

We wish to carry out inferences based on subsets of data and then
combine inferences. But why?

• Big Data

• Inference under privacy settings

• Combining views of multiple experts on a topic

3/20

Fusion without diffusions

Divide-and-conquer paradigm

Divide-and-conquer paradigm

We wish to carry out inferences based on subsets of data and then
combine inferences. But why?

• Big Data

• Inference under privacy settings

• Combining views of multiple experts on a topic

4/20

Fusion without diffusions

Fusion Problem

Fusion Problem

Target of interest:

f (x) ∝ f1(x) · · · fC (x) =
C∏

c=1

fc(x)

where C is the number of cores / experts and fc are sub-posteriors

• Many useful methods exist, but all involve approximation, e.g.
Consensus Monte Carlo (Scott et al., 2016)

4/20

Fusion without diffusions

Fusion Problem

Fusion Problem

Target of interest:

f (x) ∝ f1(x) · · · fC (x) =
C∏

c=1

fc(x)

where C is the number of cores / experts and fc are sub-posteriors

• Many useful methods exist, but all involve approximation, e.g.
Consensus Monte Carlo (Scott et al., 2016)

5/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

Consider d-dimensional target density:

f (x) ∝
√
f1(x) · f2(x)

Interested in expectations of the form:

E√f1f2 [h(X)] = E√f1f2 [h(X)]

:=

∫
h(x) ·

√
f1(x) · f2(x) dx

5/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

Consider d-dimensional target density:

f (x) ∝
√
f1(x) · f2(x)

Interested in expectations of the form:

E√f1f2 [h(X)] = E√f1f2 [h(X)]

:=

∫
h(x) ·

√
f1(x) · f2(x) dx

6/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

We can construct a rejection sampler, since:

E√f1f2 [h(X)] :=

∫
h(x) ·

√
f1(x) · f2(x) dx

=

∫
h ·

√
f1 · f2 ·

[f1 ∨ f2
f1 ∨ f2

]
·
[f1 + f2
f1 + f2

]
dx

=

∫
h ·

[√f1 · f2
f1 ∨ f2

]
·
[f1 ∨ f2
f1 + f2

]
·
[
f1 + f2

]
dx

where x ∨ y = max{x , y}

6/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

We can construct a rejection sampler, since:

E√f1f2 [h(X)] :=

∫
h(x) ·

√
f1(x) · f2(x) dx

=

∫
h ·

√
f1 · f2 ·

[f1 ∨ f2
f1 ∨ f2

]
·
[f1 + f2
f1 + f2

]
dx

=

∫
h ·

[√f1 · f2
f1 ∨ f2

]
·
[f1 ∨ f2
f1 + f2

]
·
[
f1 + f2

]
dx

where x ∨ y = max{x , y}

6/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

We can construct a rejection sampler, since:

E√f1f2 [h(X)] :=

∫
h(x) ·

√
f1(x) · f2(x) dx

=

∫
h ·

√
f1 · f2 ·

[f1 ∨ f2
f1 ∨ f2

]
·
[f1 + f2
f1 + f2

]
dx

=

∫
h ·

[√f1 · f2
f1 ∨ f2

]
·
[f1 ∨ f2
f1 + f2

]
·
[
f1 + f2

]
dx

where x ∨ y = max{x , y}

7/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

Therefore,

Ef [h(X)] :=

∫
h(x) ·

√
f1(x) · f2(x) dx

= Ef1+f2

[
h(X) ·

[√f1(X) · f2(X)

f1(X) ∨ f2(X)

]
·
[f1(X) ∨ f2(X)

f1(X) + f2(X)

]]
= Ef1+f2

[
h(X) · ρ1(X) · ρ2(X)

]
(1)

where x ∨ y = max{x , y}, ρ1(X) = f1(X)∨f2(X)
f1(X)+f2(X) ∈ [0, 1] and

ρ2(X) =

√
f1(X)·f2(X)

f1(X)∨f2(X) ∈ [0, 1]

7/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

Therefore,

Ef [h(X)] :=

∫
h(x) ·

√
f1(x) · f2(x) dx

= Ef1+f2

[
h(X) ·

[√f1(X) · f2(X)

f1(X) ∨ f2(X)

]
·
[f1(X) ∨ f2(X)

f1(X) + f2(X)

]]
= Ef1+f2

[
h(X) · ρ1(X) · ρ2(X)

]
(1)

where x ∨ y = max{x , y}, ρ1(X) = f1(X)∨f2(X)
f1(X)+f2(X) ∈ [0, 1] and

ρ2(X) =

√
f1(X)·f2(X)

f1(X)∨f2(X) ∈ [0, 1]

8/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

Result: a rejection sampler for f ∝
√
f1f2 with proposal f1 + f2 and

acceptance probability:

ρ1(X) · ρ2(X) =

√
f1(X) · f2(X)

f1(X) + f2(X)
(2)

9/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

The
√
f1f2 Algorithm

The algorithm for simulating from f ∝
√
f1f2 proceeds as follows:

1. Simulate X ∼ f1 + f2

2. Accept X with probability ρ1(X) · ρ2(X) =

√
f1(X)·f2(X)

f1(X)+f2(X) , else
return to Step 1

Note: can target f (x) ∝ f1f2 by simply simulating from f 2
1 and f 2

2

9/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

The
√
f1f2 Algorithm

The algorithm for simulating from f ∝
√
f1f2 proceeds as follows:

1. Simulate X ∼ f1 + f2

2. Accept X with probability ρ1(X) · ρ2(X) =

√
f1(X)·f2(X)

f1(X)+f2(X) , else
return to Step 1

Note: can target f (x) ∝ f1f2 by simply simulating from f 2
1 and f 2

2

9/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

The
√
f1f2 Algorithm

The algorithm for simulating from f ∝
√
f1f2 proceeds as follows:

1. Simulate X ∼ f1 + f2

2. Accept X with probability ρ1(X) · ρ2(X) =

√
f1(X)·f2(X)

f1(X)+f2(X) , else
return to Step 1

Note: can target f (x) ∝ f1f2 by simply simulating from f 2
1 and f 2

2

9/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

The
√
f1f2 Algorithm

The algorithm for simulating from f ∝
√
f1f2 proceeds as follows:

1. Simulate X ∼ f1 + f2

2. Accept X with probability ρ1(X) · ρ2(X) =

√
f1(X)·f2(X)

f1(X)+f2(X) , else
return to Step 1

Note: can target f (x) ∝ f1f2 by simply simulating from f 2
1 and f 2

2

10/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

Example

A simple toy example

Consider f ∝
√
f1f2, where f1 ∼ N (0, 1) and f2 ∼ N (4, 2).

11/20

Fusion without diffusions

A rejection sampler for f (x) ∝ f1 + f2

Case where f1 and f2 are unnormalised

If f1 and f2 are unnormalised, then simulation from f1 + f2 is
non-trivial

Suppose y1 ∼ f1(y) and y2 ∼ f2(y). Let U1,U2,U3
i.i.d∼ U[0, 1] are

independent U[0, 1] variables. Define the following events:

F1 = {U1 < f2(y1)/f1(y1)}
F2 = {U2 < f1(y2)/f2(y2)}

11/20

Fusion without diffusions

A rejection sampler for f (x) ∝ f1 + f2

Case where f1 and f2 are unnormalised

If f1 and f2 are unnormalised, then simulation from f1 + f2 is
non-trivial

Suppose y1 ∼ f1(y) and y2 ∼ f2(y). Let U1,U2,U3
i.i.d∼ U[0, 1] are

independent U[0, 1] variables. Define the following events:

F1 = {U1 < f2(y1)/f1(y1)}
F2 = {U2 < f1(y2)/f2(y2)}

12/20

Fusion without diffusions

A rejection sampler for f (x) ∝ f1 + f2

Case where f1 and f2 are unnormalised

Define y∗ and a 0− 1 indicator I as

(y∗, I) =



(y∗ = y1, I = 1) if F̄1 ∩ F2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y2, I = 1) if F1 ∩ F̄2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y1, I = 1) if F1 ∩ F2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y2, I = 1) if F1 ∩ F2 ∩ {U3 >
1
2} is true;

(y∗ = ·, I = 0) otherwise

(3)Lemma
Conditional on I = 1, y∗ follows the distribution with density
proportional to f1(y) + f2(y).

12/20

Fusion without diffusions

A rejection sampler for f (x) ∝ f1 + f2

Case where f1 and f2 are unnormalised

Define y∗ and a 0− 1 indicator I as

(y∗, I) =



(y∗ = y1, I = 1) if F̄1 ∩ F2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y2, I = 1) if F1 ∩ F̄2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y1, I = 1) if F1 ∩ F2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y2, I = 1) if F1 ∩ F2 ∩ {U3 >
1
2} is true;

(y∗ = ·, I = 0) otherwise

(3)Lemma
Conditional on I = 1, y∗ follows the distribution with density
proportional to f1(y) + f2(y).

13/20

Fusion without diffusions

A rejection sampler for f (x) ∝ f1 + f2

Example

Example

(fill in example for Bayesian Logistic Regression with 7 coefficients)

14/20

Fusion without diffusions

Extending to more than 2 sub-posteriors

Extending to more than 2 sub-posteriors

We can adopt a hierarchical approach to fusion, e.g. for
f ∝ f1f2f3f4:

f1f2f3f4

f 4
1 f 4

2 f 4
3 f 4

4

(f1f2)2 (f3f4)2

15/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X) = max{f1(X),f2(X)}
(f1(X)+f2(X)) , continue, else

return to Step 1

3. With probability ρ2(X) =

√
f1(X)f2(X)

max{f1(X),f2(X)} , accept X as a
sample from f , else return to Step 1

15/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X) = max{f1(X),f2(X)}
(f1(X)+f2(X)) , continue, else

return to Step 1

3. With probability ρ2(X) =

√
f1(X)f2(X)

max{f1(X),f2(X)} , accept X as a
sample from f , else return to Step 1

15/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X) = max{f1(X),f2(X)}
(f1(X)+f2(X)) , continue, else

return to Step 1

3. With probability ρ2(X) =

√
f1(X)f2(X)

max{f1(X),f2(X)} , accept X as a
sample from f , else return to Step 1

15/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X) = max{f1(X),f2(X)}
(f1(X)+f2(X)) , continue, else

return to Step 1

3. With probability ρ2(X) =

√
f1(X)f2(X)

max{f1(X),f2(X)} , accept X as a
sample from f , else return to Step 1

16/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

17/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

18/20

Fusion without diffusions

Problems and ongoing work

Large data-sizes

Problem of large data-sizes

Algorithm has O(n) per iteration cost
Looking to use unbiased estimators for the acceptance probability,
since:

ρ1(X) · ρ2(X) =

√
f1(X) · f2(X)

f1(X) + f2(X)

=

√
f1(X)

f1(X) + f2(X)
·

√
f2(X)

f1(X) + f2(X)

18/20

Fusion without diffusions

Problems and ongoing work

Large data-sizes

Problem of large data-sizes

Algorithm has O(n) per iteration cost
Looking to use unbiased estimators for the acceptance probability,
since:

ρ1(X) · ρ2(X) =

√
f1(X) · f2(X)

f1(X) + f2(X)

=

√
f1(X)

f1(X) + f2(X)
·

√
f2(X)

f1(X) + f2(X)

19/20

Fusion without diffusions

Conclusion

Conclusion and ongoing work

• We’ve developed a simple rejection sampling algorithm that
allows for perfect simulation from f ∝

√
f1f2 by means of

simulating from f1 and f2
• However, currently is only useful for small examples

• There is ongoing work on Monte Carlo Fusion (which will be
spoken about in the next talk by Gareth), which is more
suitable for harder cases

19/20

Fusion without diffusions

Conclusion

Conclusion and ongoing work

• We’ve developed a simple rejection sampling algorithm that
allows for perfect simulation from f ∝

√
f1f2 by means of

simulating from f1 and f2
• However, currently is only useful for small examples

• There is ongoing work on Monte Carlo Fusion (which will be
spoken about in the next talk by Gareth), which is more
suitable for harder cases

19/20

Fusion without diffusions

Conclusion

Conclusion and ongoing work

• We’ve developed a simple rejection sampling algorithm that
allows for perfect simulation from f ∝

√
f1f2 by means of

simulating from f1 and f2
• However, currently is only useful for small examples

• There is ongoing work on Monte Carlo Fusion (which will be
spoken about in the next talk by Gareth), which is more
suitable for harder cases

20/20

Fusion without diffusions

Conclusion

References

• Dai, H., Pollock, M., and Roberts, G. (2019). Monte Carlo
Fusion. Journal of Applied Probability, 56(1):174-191.

• Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A.,
George, E. I., and Mc-Culloch, R. E. (2016). Bayes and big
data: The consensus Monte Carlo algorithm. International
Journal of Management Science and Engineering
Management, 11(2):78–88.

	Divide-and-conquer paradigm
	Fusion Problem
	A rejection sampler for f(x) f_1f_2
	The f_1f_2 Algorithm
	Example

	A rejection sampler for f(x) f_1 + f_2
	Example

	Extending to more than 2 sub-posteriors
	Problems and ongoing work
	Conflicting sub-posteriors
	Large data-sizes

	Conclusion

