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Divide-and-conquer paradigm

We wish to carry out inferences based on subsets of data and then
combine inferences. But why?

• Big Data

• Inference under privacy settings

• Combining views of multiple experts on a topic
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Fusion Problem

Target of interest:

f (x) ∝ f1(x) · · · fC (x) =
C∏

c=1

fc(x)

where C is the number of cores / experts and fc are sub-posteriors

• Many useful methods exist, but all involve approximation, e.g.
Consensus Monte Carlo (Scott et al., 2016)



4/20

Fusion without diffusions

Fusion Problem

Fusion Problem

Target of interest:

f (x) ∝ f1(x) · · · fC (x) =
C∏

c=1

fc(x)

where C is the number of cores / experts and fc are sub-posteriors

• Many useful methods exist, but all involve approximation, e.g.
Consensus Monte Carlo (Scott et al., 2016)



5/20

Fusion without diffusions

A rejection sampler for f (x) ∝
√

f1f2

The
√

f1f2 Algorithm

Rejection sampler for f (x) ∝
√
f1f2

Consider d-dimensional target density:

f (x) ∝
√
f1(x) · f2(x)

Interested in expectations of the form:

E√f1f2 [h(X )] = E√f1f2 [h(X )]

:=

∫
h(x) ·

√
f1(x) · f2(x) dx
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Rejection sampler for f (x) ∝
√
f1f2

We can construct a rejection sampler, since:

E√f1f2 [h(X )] :=

∫
h(x) ·

√
f1(x) · f2(x) dx

=

∫
h ·

√
f1 · f2 ·

[ f1 ∨ f2
f1 ∨ f2

]
·
[ f1 + f2
f1 + f2

]
dx

=

∫
h ·

[√f1 · f2
f1 ∨ f2

]
·
[ f1 ∨ f2
f1 + f2

]
·
[
f1 + f2

]
dx

where x ∨ y = max{x , y}
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Rejection sampler for f (x) ∝
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f1f2

Therefore,

Ef [h(X )] :=

∫
h(x) ·

√
f1(x) · f2(x) dx

= Ef1+f2

[
h(X ) ·

[√f1(X ) · f2(X )

f1(X ) ∨ f2(X )

]
·
[ f1(X ) ∨ f2(X )

f1(X ) + f2(X )

]]
= Ef1+f2

[
h(X ) · ρ1(X ) · ρ2(X )

]
(1)

where x ∨ y = max{x , y}, ρ1(X ) = f1(X )∨f2(X )
f1(X )+f2(X ) ∈ [0, 1] and

ρ2(X ) =

√
f1(X )·f2(X )

f1(X )∨f2(X ) ∈ [0, 1]
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Rejection sampler for f (x) ∝
√
f1f2

Result: a rejection sampler for f ∝
√
f1f2 with proposal f1 + f2 and

acceptance probability:

ρ1(X ) · ρ2(X ) =

√
f1(X ) · f2(X )

f1(X ) + f2(X )
(2)
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The
√
f1f2 Algorithm

The algorithm for simulating from f ∝
√
f1f2 proceeds as follows:

1. Simulate X ∼ f1 + f2

2. Accept X with probability ρ1(X ) · ρ2(X ) =

√
f1(X )·f2(X )

f1(X )+f2(X ) , else
return to Step 1

Note: can target f (x) ∝ f1f2 by simply simulating from f 2
1 and f 2

2
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A rejection sampler for f (x) ∝
√

f1f2

Example

A simple toy example

Consider f ∝
√
f1f2, where f1 ∼ N (0, 1) and f2 ∼ N (4, 2).
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A rejection sampler for f (x) ∝ f1 + f2

Case where f1 and f2 are unnormalised

If f1 and f2 are unnormalised, then simulation from f1 + f2 is
non-trivial

Suppose y1 ∼ f1(y) and y2 ∼ f2(y). Let U1,U2,U3
i.i.d∼ U[0, 1] are

independent U[0, 1] variables. Define the following events:

F1 = {U1 < f2(y1)/f1(y1)}
F2 = {U2 < f1(y2)/f2(y2)}
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A rejection sampler for f (x) ∝ f1 + f2

Case where f1 and f2 are unnormalised

Define y∗ and a 0− 1 indicator I as

(y∗, I ) =



(y∗ = y1, I = 1) if F̄1 ∩ F2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y2, I = 1) if F1 ∩ F̄2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y1, I = 1) if F1 ∩ F2 ∩ {U3 ≤ 1
2} is true;

(y∗ = y2, I = 1) if F1 ∩ F2 ∩ {U3 >
1
2} is true;

(y∗ = ·, I = 0) otherwise

(3)Lemma
Conditional on I = 1, y∗ follows the distribution with density
proportional to f1(y) + f2(y).
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A rejection sampler for f (x) ∝ f1 + f2

Example

Example

(fill in example for Bayesian Logistic Regression with 7 coefficients)
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Extending to more than 2 sub-posteriors

Extending to more than 2 sub-posteriors

We can adopt a hierarchical approach to fusion, e.g. for
f ∝ f1f2f3f4:

f1f2f3f4

f 4
1 f 4

2 f 4
3 f 4

4

(f1f2)2 (f3f4)2
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Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X ) = max{f1(X ),f2(X )}
(f1(X )+f2(X )) , continue, else

return to Step 1

3. With probability ρ2(X ) =

√
f1(X )f2(X )

max{f1(X ),f2(X )} , accept X as a
sample from f , else return to Step 1



15/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X ) = max{f1(X ),f2(X )}
(f1(X )+f2(X )) , continue, else

return to Step 1

3. With probability ρ2(X ) =

√
f1(X )f2(X )

max{f1(X ),f2(X )} , accept X as a
sample from f , else return to Step 1



15/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X ) = max{f1(X ),f2(X )}
(f1(X )+f2(X )) , continue, else

return to Step 1

3. With probability ρ2(X ) =

√
f1(X )f2(X )

max{f1(X ),f2(X )} , accept X as a
sample from f , else return to Step 1



15/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from f ∝ f1f2 as
follows:

1. Simulate X ∼ f1 + f2

2. With probability ρ1(X ) = max{f1(X ),f2(X )}
(f1(X )+f2(X )) , continue, else

return to Step 1

3. With probability ρ2(X ) =

√
f1(X )f2(X )

max{f1(X ),f2(X )} , accept X as a
sample from f , else return to Step 1



16/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors



17/20

Fusion without diffusions

Problems and ongoing work

Conflicting sub-posteriors

Problem of conflicting sub-posteriors



18/20

Fusion without diffusions

Problems and ongoing work

Large data-sizes

Problem of large data-sizes

Algorithm has O(n) per iteration cost
Looking to use unbiased estimators for the acceptance probability,
since:

ρ1(X ) · ρ2(X ) =

√
f1(X ) · f2(X )

f1(X ) + f2(X )

=

√
f1(X )

f1(X ) + f2(X )
·

√
f2(X )

f1(X ) + f2(X )
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Conclusion and ongoing work

• We’ve developed a simple rejection sampling algorithm that
allows for perfect simulation from f ∝

√
f1f2 by means of

simulating from f1 and f2
• However, currently is only useful for small examples

• There is ongoing work on Monte Carlo Fusion (which will be
spoken about in the next talk by Gareth), which is more
suitable for harder cases
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