Fusion without diffusions Ryan Chan

Murray Pollock ${ }^{1}$, Gareth Roberts ${ }^{1}$, Hongsheng Dai ${ }^{2}$
${ }^{1}$ University of Warwick
${ }^{2}$ University of Essex

24 March, 2020

Outline

Divide-and-conquer paradigm
Fusion Problem
A rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$
The $\sqrt{f_{1} f_{2}}$ Algorithm
Example
A rejection sampler for $f(x) \propto f_{1}+f_{2}$
Example
Extending to more than 2 sub-posteriors
Problems and ongoing work
Conflicting sub-posteriors
Large data-sizes
Conclusion

Divide-and-conquer paradigm

Divide-and-conquer paradigm

We wish to carry out inferences based on subsets of data and then combine inferences. But why?

- Big Data
- Inference under privacy settings
- Combining views of multiple experts on a topic

Divide-and-conquer paradigm

We wish to carry out inferences based on subsets of data and then combine inferences. But why?

- Big Data
- Inference under privacy settings
- Combining views of multiple experts on a topic

-Fusion Problem

Fusion Problem

Target of interest:

$$
f(\boldsymbol{x}) \propto f_{1}(\boldsymbol{x}) \cdots f_{C}(\boldsymbol{x})=\prod_{c=1}^{C} f_{c}(\boldsymbol{x})
$$

where C is the number of cores / experts and f_{c} are sub-posteriors

- Many useful methods exist, but all involve approximation, e.g. Consensus Monte Carlo (Scott et al., 2016)

Fusion Problem

Target of interest:

$$
f(\boldsymbol{x}) \propto f_{1}(\boldsymbol{x}) \cdots f_{C}(\boldsymbol{x})=\prod_{c=1}^{C} f_{c}(\boldsymbol{x})
$$

where C is the number of cores / experts and f_{c} are sub-posteriors

- Many useful methods exist, but all involve approximation, e.g. Consensus Monte Carlo (Scott et al., 2016)

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

Consider d-dimensional target density:

$$
f(\boldsymbol{x}) \propto \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})}
$$

Interested in expectations of the form:

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

Consider d-dimensional target density:

$$
f(\boldsymbol{x}) \propto \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})}
$$

Interested in expectations of the form:

$$
\begin{aligned}
\mathbb{E}_{\sqrt{f_{1} f_{2}}}[h(X)] & =\mathbb{E}_{\sqrt{f_{1} f_{2}}}[h(X)] \\
& :=\int h(\boldsymbol{x}) \cdot \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})} \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

We can construct a rejection sampler, since:

$$
\mathbb{E}_{\sqrt{f_{1} f_{2}}}[h(X)]:=\int h(\boldsymbol{x}) \cdot \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})} \mathrm{d} \boldsymbol{x}
$$

where $x \vee y=\max \{x, y\}$

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

We can construct a rejection sampler, since:

$$
\begin{aligned}
\mathbb{E}_{\sqrt{f_{1} f_{2}}}[h(X)] & :=\int h(\boldsymbol{x}) \cdot \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})} \mathrm{d} \boldsymbol{x} \\
& =\int h \cdot \sqrt{f_{1} \cdot f_{2}} \cdot\left[\frac{f_{1} \vee f_{2}}{f_{1} \vee f_{2}}\right] \cdot\left[\frac{f_{1}+f_{2}}{f_{1}+f_{2}}\right] \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

$$
\text { where } x \vee y=\max \{x, y\}
$$

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

We can construct a rejection sampler, since:

$$
\begin{aligned}
\mathbb{E}_{\sqrt{f_{1} f_{2}}}[h(X)] & :=\int h(\boldsymbol{x}) \cdot \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})} \mathrm{d} \boldsymbol{x} \\
& =\int h \cdot \sqrt{f_{1} \cdot f_{2}} \cdot\left[\frac{f_{1} \vee f_{2}}{f_{1} \vee f_{2}}\right] \cdot\left[\frac{f_{1}+f_{2}}{f_{1}+f_{2}}\right] \mathrm{d} \boldsymbol{x} \\
& =\int h \cdot\left[\frac{\sqrt{f_{1} \cdot f_{2}}}{f_{1} \vee f_{2}}\right] \cdot\left[\frac{f_{1} \vee f_{2}}{f_{1}+f_{2}}\right] \cdot\left[f_{1}+f_{2}\right] \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

where $x \vee y=\max \{x, y\}$

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

Therefore,

$$
\begin{aligned}
\mathbb{E}_{f}[h(X)] & :=\int h(\boldsymbol{x}) \cdot \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})} \mathrm{d} \boldsymbol{x} \\
& =\mathbb{E}_{f_{1}+f_{2}}\left[h(X) \cdot\left[\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X) \vee f_{2}(X)}\right] \cdot\left[\frac{f_{1}(X) \vee f_{2}(X)}{f_{1}(X)+f_{2}(X)}\right]\right]
\end{aligned}
$$

where $x \vee y=\max \{x, y\}, \rho_{1}(X)=\frac{f_{1}(X) \vee f_{2}(X)}{f_{1}(X)+f_{2}(X)} \in[0,1]$ and $\rho_{2}(X)=\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X) \vee f_{2}(X)} \in\left[\begin{array}{ll}0 & 1\end{array}\right]$

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

Therefore,

$$
\begin{align*}
\mathbb{E}_{f}[h(X)] & :=\int h(\boldsymbol{x}) \cdot \sqrt{f_{1}(\boldsymbol{x}) \cdot f_{2}(\boldsymbol{x})} \mathrm{d} \boldsymbol{x} \\
& =\mathbb{E}_{f_{1}+f_{2}}\left[h(X) \cdot\left[\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X) \vee f_{2}(X)}\right] \cdot\left[\frac{f_{1}(X) \vee f_{2}(X)}{f_{1}(X)+f_{2}(X)}\right]\right] \\
& =\mathbb{E}_{f_{1}+f_{2}}\left[h(X) \cdot \rho_{1}(X) \cdot \rho_{2}(X)\right] \tag{1}
\end{align*}
$$

where $x \vee y=\max \{x, y\}, \rho_{1}(X)=\frac{f_{1}(X) \vee f_{2}(X)}{f_{1}(X)+f_{2}(X)} \in[0,1]$ and $\rho_{2}(X)=\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X) \vee f_{2}(X)} \in[0,1]$

Rejection sampler for $f(x) \propto \sqrt{f_{1} f_{2}}$

Result: a rejection sampler for $f \propto \sqrt{f_{1} f_{2}}$ with proposal $f_{1}+f_{2}$ and acceptance probability:

$$
\begin{equation*}
\rho_{1}(X) \cdot \rho_{2}(X)=\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X)+f_{2}(X)} \tag{2}
\end{equation*}
$$

The $\sqrt{f_{1} f_{2}}$ Algorithm

The algorithm for simulating from $f \propto \sqrt{f_{1} f_{2}}$ proceeds as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. Accept X with probability $\rho_{1}(X) \cdot \rho_{2}(X)=\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X)+f_{2}(X)}$, else return to Step 1

Note: can target $f(x) \propto f_{1} f_{2}$ by simply simulating from f_{1}^{2} and f_{2}^{2}

LThe $\sqrt{f_{1} f_{2}}$ Algorithm

The $\sqrt{f_{1} f_{2}}$ Algorithm

The algorithm for simulating from $f \propto \sqrt{f_{1} f_{2}}$ proceeds as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. Accept X with probability $\rho_{1}(X) \cdot \rho_{2}(X)=\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X)+f_{2}(X)}$, else return to Step 1

Note: can target $f(x) \propto f_{1} f_{2}$ by simply simulating from f_{1}^{2} and f_{2}^{2}

The $\sqrt{f_{1} f_{2}}$ Algorithm

The algorithm for simulating from $f \propto \sqrt{f_{1} f_{2}}$ proceeds as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. Accept X with probability $\rho_{1}(X) \cdot \rho_{2}(X)=\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X)+f_{2}(X)}$, else return to Step 1

Note: can target $f(x) \propto f_{1} f_{2}$ by simply simulating from f_{1}^{2} and f_{2}^{2}

The $\sqrt{f_{1} f_{2}}$ Algorithm

The algorithm for simulating from $f \propto \sqrt{f_{1} f_{2}}$ proceeds as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. Accept X with probability $\rho_{1}(X) \cdot \rho_{2}(X)=\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X)+f_{2}(X)}$, else return to Step 1

Note: can target $f(x) \propto f_{1} f_{2}$ by simply simulating from f_{1}^{2} and f_{2}^{2}

A simple toy example

Consider $f \propto \sqrt{f_{1} f_{2}}$, where $f_{1} \sim \mathcal{N}(0,1)$ and $f_{2} \sim \mathcal{N}(4,2)$.

Case where f_{1} and f_{2} are unnormalised

If f_{1} and f_{2} are unnormalised, then simulation from $f_{1}+f_{2}$ is non-trivial
Suppose $y_{1} \sim f_{1}(y)$ and $y_{2} \sim f_{2}(\boldsymbol{y})$. Let $U_{1}, U_{2}, U_{3} \stackrel{i . i . d}{\sim} U[0,1]$ are independent $U[0,1]$ variables. Define the following events:

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{U_{1}<f_{2}\left(\mu_{1}\right) / f_{1}\left(\varphi_{1}\right)\right\} \\
& \mathcal{F}_{2}=\left\{U_{2}<f_{1}\left(y_{2}\right) / f_{2}\left(y_{2}\right)\right\}
\end{aligned}
$$

Case where f_{1} and f_{2} are unnormalised

If f_{1} and f_{2} are unnormalised, then simulation from $f_{1}+f_{2}$ is non-trivial
Suppose $\boldsymbol{y}_{1} \sim f_{1}(\boldsymbol{y})$ and $\boldsymbol{y}_{2} \sim f_{2}(\boldsymbol{y})$. Let $U_{1}, U_{2}, U_{3} \stackrel{\text { i.i.d }}{\sim} U[0,1]$ are independent $U[0,1]$ variables. Define the following events:

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{U_{1}<f_{2}\left(\boldsymbol{y}_{1}\right) / f_{1}\left(\boldsymbol{y}_{1}\right)\right\} \\
& \mathcal{F}_{2}=\left\{U_{2}<f_{1}\left(\boldsymbol{y}_{2}\right) / f_{2}\left(\boldsymbol{y}_{2}\right)\right\}
\end{aligned}
$$

Case where f_{1} and f_{2} are unnormalised

Define \boldsymbol{y}^{*} and a $0-1$ indicator $/$ as

$$
\left(\boldsymbol{y}^{*}, I\right)= \begin{cases}\left(\boldsymbol{y}^{*}=\boldsymbol{y}_{1}, I=1\right) & \text { if } \overline{\mathcal{F}}_{1} \cap \mathcal{F}_{2} \cap\left\{U_{3} \leq \frac{1}{2}\right\} \text { is true; } \tag{3}\\ \left(\boldsymbol{y}^{*}=\boldsymbol{y}_{2}, I=1\right) & \text { if } \mathcal{F}_{1} \cap \overline{\mathcal{F}}_{2} \cap\left\{U_{3} \leq \frac{1}{2}\right\} \text { is true; } \\ \left(\boldsymbol{y}^{*}=\boldsymbol{y}_{1}, I=1\right) & \text { if } \mathcal{F}_{1} \cap \mathcal{F}_{2} \cap\left\{U_{3} \leq \frac{1}{2}\right\} \text { is true; } \\ \left(\boldsymbol{y}^{*}=\boldsymbol{y}_{2}, I=1\right) & \text { if } \mathcal{F}_{1} \cap \mathcal{F}_{2} \cap\left\{U_{3}>\frac{1}{2}\right\} \text { is true; } \\ \left(\boldsymbol{y}^{*}=\cdot, I=0\right) & \text { otherwise }\end{cases}
$$

Conditional on I =1, y^{*} follows the distribution with density
proportional to $f_{1}(\boldsymbol{y})+f_{2}(\boldsymbol{y})$.

Case where f_{1} and f_{2} are unnormalised

Define \boldsymbol{y}^{*} and a $0-1$ indicator $/$ as

$$
\left(\boldsymbol{y}^{*}, I\right)= \begin{cases}\left(\boldsymbol{y}^{*}=\boldsymbol{y}_{1}, I=1\right) & \text { if } \overline{\mathcal{F}}_{1} \cap \mathcal{F}_{2} \cap\left\{U_{3} \leq \frac{1}{2}\right\} \text { is true; } \tag{3}\\ \left(\boldsymbol{y}^{*}=\boldsymbol{y}_{2}, I=1\right) & \text { if } \mathcal{F}_{1} \cap \overline{\mathcal{F}}_{2} \cap\left\{U_{3} \leq \frac{1}{2}\right\} \text { is true; } \\ \left(\boldsymbol{y}^{*}=\boldsymbol{y}_{1}, I=1\right) & \text { if } \mathcal{F}_{1} \cap \mathcal{F}_{2} \cap\left\{U_{3} \leq \frac{1}{2}\right\} \text { is true; } \\ \left(\boldsymbol{y}^{*}=\boldsymbol{y}_{2}, I=1\right) & \text { if } \mathcal{F}_{1} \cap \mathcal{F}_{2} \cap\left\{U_{3}>\frac{1}{2}\right\} \text { is true; } \\ \left(\boldsymbol{y}^{*}=\cdot, I=0\right) & \text { otherwise }\end{cases}
$$

Lemma
Conditional on $I=1, \boldsymbol{y}^{*}$ follows the distribution with density proportional to $f_{1}(\boldsymbol{y})+f_{2}(\boldsymbol{y})$.

Example

(fill in example for Bayesian Logistic Regression with 7 coefficients)

Extending to more than 2 sub-posteriors

We can adopt a hierarchical approach to fusion, e.g. for $f \propto f_{1} f_{2} f_{3} f_{4}:$

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from $f \propto f_{1} f_{2}$ as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. With probability $\rho_{1}(X)=\frac{\max \left\{f_{1}(X), f_{2}(X)\right\}}{\left(f_{1}(X)+f_{2}(X)\right)}$, continue, else
return to Step 1

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from $f \propto f_{1} f_{2}$ as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. With probability $\rho_{1}(X)=\frac{\max \left\{f_{1}(X), f_{2}(X)\right\}}{\left(f_{1}(X)+f_{2}(X)\right)}$, continue, else return to Step 1
3. With probability $p_{2}(X)=\frac{\sqrt{f_{1}(X) f_{2}(X)}}{\max \left\{f_{1}(X), f_{2}(X)\right\}}$, accept X as a sample from f, else return to Step 1

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from $f \propto f_{1} f_{2}$ as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. With probability $\rho_{1}(X)=\frac{\max \left\{f_{1}(X), f_{2}(X)\right\}}{\left(f_{1}(X)+f_{2}(X)\right)}$, continue, else return to Step 1

Problem of conflicting sub-posteriors

We can rewrite the algorithm for simulating from $f \propto f_{1} f_{2}$ as follows:

1. Simulate $X \sim f_{1}+f_{2}$
2. With probability $\rho_{1}(X)=\frac{\max \left\{f_{1}(X), f_{2}(X)\right\}}{\left(f_{1}(X)+f_{2}(X)\right)}$, continue, else return to Step 1
3. With probability $\rho_{2}(X)=\frac{\sqrt{f_{1}(X) f_{2}(X)}}{\max \left\{f_{1}(X), f_{2}(X)\right\}}$, accept X as a sample from f, else return to Step 1

Conflicting sub-posteriors

Problem of conflicting sub-posteriors

- Conflicting sub-posteriors

Problem of conflicting sub-posteriors

Problem of large data-sizes

Algorithm has $\mathcal{O}(n)$ per iteration cost
Looking to use unbiased estimators for the acceptance probability,
since:

Problem of large data-sizes

Algorithm has $\mathcal{O}(n)$ per iteration cost
Looking to use unbiased estimators for the acceptance probability, since:

$$
\begin{aligned}
\rho_{1}(X) \cdot \rho_{2}(X) & =\frac{\sqrt{f_{1}(X) \cdot f_{2}(X)}}{f_{1}(X)+f_{2}(X)} \\
& =\sqrt{\frac{f_{1}(X)}{f_{1}(X)+f_{2}(X)}} \cdot \sqrt{\frac{f_{2}(X)}{f_{1}(X)+f_{2}(X)}}
\end{aligned}
$$

Conclusion and ongoing work

- We've developed a simple rejection sampling algorithm that allows for perfect simulation from $f \propto \sqrt{f_{1} f_{2}}$ by means of simulating from f_{1} and f_{2}
- There is ongoing work on Monte Carlo Fusion (which will be spoken about in the next talk by Gareth), which is more suitable for harder cases

Conclusion and ongoing work

- We've developed a simple rejection sampling algorithm that allows for perfect simulation from $f \propto \sqrt{f_{1} f_{2}}$ by means of simulating from f_{1} and f_{2}
- However, currently is only useful for small examples
- There is ongoing work on Monte Carlo Fusion (which will be spoken about in the next talk by Gareth), which is more suitable for harder cases

Conclusion and ongoing work

- We've developed a simple rejection sampling algorithm that allows for perfect simulation from $f \propto \sqrt{f_{1} f_{2}}$ by means of simulating from f_{1} and f_{2}
- However, currently is only useful for small examples
- There is ongoing work on Monte Carlo Fusion (which will be spoken about in the next talk by Gareth), which is more suitable for harder cases

References

- Dai, H., Pollock, M., and Roberts, G. (2019). Monte Carlo Fusion. Journal of Applied Probability, 56(1):174-191.
- Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and Mc-Culloch, R. E. (2016). Bayes and big data: The consensus Monte Carlo algorithm. International Journal of Management Science and Engineering Management, 11(2):78-88.

