Hierarchical Monte Carlo Fusion Ryan Chan

Murray Pollock (Newcastle), Adam Johansen (Warwick), Gareth Roberts (Warwick)

10 July 2020

The Alan Turing Institute

Outline

Monte Carlo Fusion

Fork-and-join

Constructing a rejection sampler

Double Langevin Approach

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Divide-and-Conquer SMC with Fusion

Logistic Regression Example

Ongoing directions

Fusion Problem

• Target:

$$\pi(\mathbf{x}) \propto \prod_{c=1}^{C} f_c(\mathbf{x})$$

where each *sub-posterior*, $f_c(\mathbf{x})$, is a density representing one of the C distributed inferences we wish to unify

- Assume we can sample $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$
- Applications:
 - Expert elicitation: combining views of multiple experts
 - Privacy setting
 - Big Data (by construction)
 - Tempering (by construction)

Fusion Problem

• Target:

$$\pi(\mathbf{x}) \propto \prod_{c=1}^{C} f_c(\mathbf{x})$$

where each *sub-posterior*, $f_c(x)$, is a density representing one of the C distributed inferences we wish to unify

- Assume we can sample $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$
- Applications:
 - Expert elicitation: combining views of multiple experts
 - Privacy setting
 - Big Data (by construction)
 - Tempering (by construction)

Fusion Problem

• Target:

$$\pi(\mathbf{x}) \propto \prod_{c=1}^{C} f_c(\mathbf{x})$$

where each *sub-posterior*, $f_c(x)$, is a density representing one of the C distributed inferences we wish to unify

- Assume we can sample $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$
- Applications:
 - Expert elicitation: combining views of multiple experts
 - Privacy setting
 - Big Data (by construction)
 - Tempering (by construction)

- Consider we have data x with a large number of observations
- The likelihood ℓ(x | θ) becomes expensive to calculate
 This makes MCMC prohibitively slow for big data
- Potential solution:

$$\pi(\theta \mid oldsymbol{x}) \propto \prod_{i=1}^n \ell(oldsymbol{x} \mid heta) \pi(heta) = \prod_{c=1}^C \ell(oldsymbol{x}_c \mid heta) \pi(heta)^{rac{1}{C}}$$

where \mathbf{x}_c denotes the c-th subset for $c=1,\ldots,C$ and $\pi(\theta)=\prod_{c=1}^C\pi(\theta)^{\frac{1}{c}}$ is the prior

- Consider we have data x with a large number of observations
- The likelihood $\ell(\mathbf{x} \mid \theta)$ becomes expensive to calculate
 - This makes MCMC prohibitively slow for big data
- Potential solution:

$$\pi(\theta \mid oldsymbol{x}) \propto \prod_{i=1}^n \ell(oldsymbol{x} \mid heta) \pi(heta) = \prod_{c=1}^C \ell(oldsymbol{x}_c \mid heta) \pi(heta)^{rac{1}{C}}$$

where \mathbf{x}_c denotes the c-th subset for $c=1,\ldots,C$ and $\pi(\theta)=\prod_{c=1}^C\pi(\theta)^{\frac{1}{c}}$ is the prior

- Consider we have data x with a large number of observations
- The likelihood $\ell(\mathbf{x} \mid \theta)$ becomes expensive to calculate
 - This makes MCMC prohibitively slow for big data
- Potential solution:

$$\pi(\theta \mid \mathbf{x}) \propto \prod_{i=1}^{n} \ell(\mathbf{x} \mid \theta) \pi(\theta) = \prod_{c=1}^{C} \ell(\mathbf{x}_{c} \mid \theta) \pi(\theta)^{\frac{1}{C}}$$

where \mathbf{x}_c denotes the c-th subset for $c=1,\ldots,C$ and $\pi(\theta)=\prod_{c=1}^C\pi(\theta)^{\frac{1}{c}}$ is the prior

- Consider we have data x with a large number of observations
- The likelihood $\ell(\mathbf{x} \mid \theta)$ becomes expensive to calculate
 - This makes MCMC prohibitively slow for big data
- Potential solution:

$$\pi(\theta \mid \mathbf{x}) \propto \prod_{i=1}^{n} \ell(\mathbf{x} \mid \theta) \pi(\theta) = \prod_{c=1}^{C} \ell(\mathbf{x}_{c} \mid \theta) \pi(\theta)^{\frac{1}{C}}$$

where \mathbf{x}_c denotes the c-th subset for $c=1,\ldots,C$ and $\pi(\theta)=\prod_{c=1}^C\pi(\theta)^{\frac{1}{c}}$ is the prior

- Consider we have data x with a large number of observations
- The likelihood $\ell(\mathbf{x} \mid \theta)$ becomes expensive to calculate
 - This makes MCMC prohibitively slow for big data
- Potential solution:

$$\pi(\theta \mid \mathbf{x}) \propto \prod_{i=1}^{n} \ell(\mathbf{x} \mid \theta) \pi(\theta) = \prod_{c=1}^{C} \ell(\mathbf{x}_{c} \mid \theta) \pi(\theta)^{\frac{1}{C}}$$

where \mathbf{x}_c denotes the c-th subset for $c=1,\ldots,C$ and $\pi(\theta)=\prod_{c=1}^C\pi(\theta)^{\frac{1}{c}}$ is the prior

Fusion for Tempering

- Consider the power-tempered target distribution $\pi_{\beta}(\mathbf{x}) = [\pi(\mathbf{x})]^{\beta}$ for $\beta \in (0, 1]$
- MCMC can become computationally expensive to sample from multi-modal densities and can get stuck in modes
- Potential solution:

$$\pi(\mathbf{x}) = \pi(\mathbf{x})^{\frac{1}{eta} \cdot eta} = \prod_{c=1}^{\frac{1}{eta}} \pi_{eta}(\mathbf{x})$$

where $rac{1}{eta} \in \mathbb{N}$

Fusion for Tempering

- Consider the power-tempered target distribution $\pi_{\beta}(\mathbf{x}) = [\pi(\mathbf{x})]^{\beta}$ for $\beta \in (0, 1]$
- MCMC can become computationally expensive to sample from multi-modal densities and can get stuck in modes
- Potential solution:

$$\pi(\mathbf{x}) = \pi(\mathbf{x})^{rac{1}{eta} \cdot eta} = \prod_{c=1}^{rac{1}{eta}} \pi_{eta}(\mathbf{x})$$

where $rac{1}{eta} \in \mathbb{N}$

Fusion for Tempering

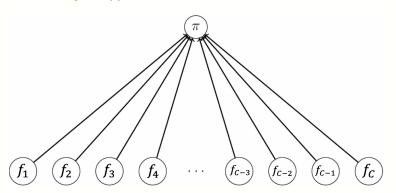
- Consider the power-tempered target distribution $\pi_{\beta}(\mathbf{x}) = [\pi(\mathbf{x})]^{\beta}$ for $\beta \in (0, 1]$
- MCMC can become computationally expensive to sample from multi-modal densities and can get stuck in modes
- Potential solution:

$$\pi(\mathbf{x}) = \pi(\mathbf{x})^{rac{1}{eta} \cdot eta} = \prod_{c=1}^{rac{1}{eta}} \pi_{eta}(\mathbf{x})$$

where $\frac{1}{\beta} \in \mathbb{N}$

Fork-and-join

The fork-and-join approach:



Current Fork-and-Join Methods

- Several fork-and-join methods have been developed. For instance
 - Kernel density averaging [Neiswanger et al., 2013]
 - Weierstrass sampler [Wang and Dunson, 2013]
 - Consensus Monte Carlo [Scott et al., 2016]
- A primary weakness of these methods is that the recombination is inexact in general and involve approximations
- However, Monte Carlo Fusion [Dai et al., 2019] is exact

Current Fork-and-Join Methods

- Several fork-and-join methods have been developed. For instance
 - Kernel density averaging [Neiswanger et al., 2013]
 - Weierstrass sampler [Wang and Dunson, 2013]
 - Consensus Monte Carlo [Scott et al., 2016]
- A primary weakness of these methods is that the recombination is inexact in general and involve approximations
- However, Monte Carlo Fusion [Dai et al., 2019] is exact

Current Fork-and-Join Methods

- Several fork-and-join methods have been developed. For instance
 - Kernel density averaging [Neiswanger et al., 2013]
 - Weierstrass sampler [Wang and Dunson, 2013]
 - Consensus Monte Carlo [Scott et al., 2016]
- A primary weakness of these methods is that the recombination is inexact in general and involve approximations
- However, Monte Carlo Fusion [Dai et al., 2019] is exact

Constructing a rejection sampler - An Extended Target

Proposition

Suppose that $p_c(\mathbf{y} \mid \mathbf{x}^{(c)})$ is the transition density of a stochastic process with stationary distribution $f_c^2(\mathbf{x})$. The (C+1)d-dimensional (fusion) density proportional to the integrable function

$$g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c^2(\mathbf{x}^{(c)}) p_c(\mathbf{y} \mid \mathbf{x}^{(c)}) \cdot \frac{1}{f_c(\mathbf{y})} \right]$$

admits the marginal density π for \mathbf{y} .

• Main idea: If we can sample from g, then we can can obtain a draw from the fusion density $(y \sim \pi)$

Constructing a rejection sampler - An Extended Target

Proposition

Suppose that $p_c(\mathbf{y} \mid \mathbf{x}^{(c)})$ is the transition density of a stochastic process with stationary distribution $f_c^2(\mathbf{x})$. The (C+1)d-dimensional (fusion) density proportional to the integrable function

$$g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c^2(\mathbf{x}^{(c)}) p_c(\mathbf{y} \mid \mathbf{x}^{(c)}) \cdot \frac{1}{f_c(\mathbf{y})} \right]$$

admits the marginal density π for \mathbf{y} .

• Main idea: If we can sample from g, then we can can obtain a draw from the fusion density $(y \sim \pi)$

- There are many possible choices for $p_c(\mathbf{y} \mid \mathbf{x})$
- Let $p_c(\mathbf{y} \mid \mathbf{x}) \coloneqq p_{T,c}(\mathbf{y} \mid \mathbf{x})$, the transition density of the d-dimensional (double) Langevin (DL) diffusion processes $\mathbf{X}_t^{(c)}$ for $c=1,\ldots,C$, from \mathbf{x} to \mathbf{y} for a pre-defined time T>0 given by

$$\mathrm{d} \boldsymbol{X}_t^{(c)} = \nabla \log f_c(\boldsymbol{X}_t^{(c)}) \mathrm{d} t + \mathrm{d} \boldsymbol{W}_t^c,$$

- $W_t^{(c)}$ is d-dimensional Brownian motion
- ∇ is the gradient operator over x
- Has stationary distribution $f_c^2(\mathbf{x})$

- There are many possible choices for $p_c(\mathbf{y} \mid \mathbf{x})$
- Let $p_c(\boldsymbol{y} \mid \boldsymbol{x}) \coloneqq p_{T,c}(\boldsymbol{y} \mid \boldsymbol{x})$, the transition density of the d-dimensional (double) Langevin (DL) diffusion processes $\boldsymbol{X}_t^{(c)}$ for $c=1,\ldots,C$, from \boldsymbol{x} to \boldsymbol{y} for a pre-defined time T>0 given by

$$d\mathbf{X}_t^{(c)} = \nabla \log f_c(\mathbf{X}_t^{(c)}) dt + d\mathbf{W}_t^c,$$

- $W_t^{(c)}$ is d-dimensional Brownian motion
- ∇ is the gradient operator over ${\it x}$
- Has stationary distribution $f_c^2(\mathbf{x})$

• Extended Target Density:

$$g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c^2(\mathbf{x}^{(c)}) p_{T,c}(\mathbf{y} \mid \mathbf{x}^{(c)}) \cdot \frac{1}{f_c(\mathbf{y})} \right]$$

Consider the proposal density h for the extended target g:

$$h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

•
$$\bar{x} = \frac{1}{C} \sum_{c=1}^{C} x^{(c)}$$

T is an arbitrary positive constant

• Extended Target Density:

$$g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c^2(\mathbf{x}^{(c)}) p_{T,c}(\mathbf{y} \mid \mathbf{x}^{(c)}) \cdot \frac{1}{f_c(\mathbf{y})} \right]$$

Consider the proposal density h for the extended target g:

$$h(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(C)}, \mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

- $\bar{\mathbf{x}} = \frac{1}{C} \sum_{c=1}^{C} \mathbf{x}^{(c)}$
- T is an arbitrary positive constant

• Simulation from *h* is easy:

$$h(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(C)}, \mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

- 1. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ independently
- 2. Simulate $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{x}}, \frac{T\mathbb{I}_d}{C})$

• Simulation from *h* is easy:

$$h(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(C)}, \mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

- 1. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ independently
- 2. Simulate $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{x}}, \frac{T\mathbb{I}_d}{C})$

• Simulation from *h* is easy:

$$h(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(C)}, \mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

- 1. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ independently
- 2. Simulate $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{x}}, \frac{T\mathbb{I}_d}{C})$

Rejection Sampling - acceptance probability

Acceptance probability:

$$\frac{g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})}{h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})} \propto \rho \cdot Q$$

where

$$\begin{cases} \rho \coloneqq e^{-\frac{C\sigma^2}{2T}}, & \sigma^2 = \frac{1}{C} \sum_{c=1}^C \left\| \boldsymbol{x}^{(c)} - \bar{\boldsymbol{x}} \right\|^2 \\ Q \coloneqq \mathbb{E}_{\bar{\mathbb{W}}} \left(\prod_{c=1}^C \left[\exp \left\{ - \int_0^T \left(\phi_c(\boldsymbol{x}_t^{(c)}) - \Phi_c \right) \mathrm{d}t \right\} \right] \right) \end{cases}$$

where $\bar{\mathbb{W}}$ denotes the law of C independent Brownian bridges $\pmb{x}_t^{(1)},\ldots,\pmb{x}_t^{(C)}$ with $\pmb{x}_0=\pmb{x}^{(c)}$ and $\pmb{x}_T^{(c)}=\pmb{y}$

Rejection Sampling - acceptance probability

Acceptance probability:

$$\frac{g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})}{h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})} \propto \rho \cdot Q$$

where

$$\begin{cases} \rho \coloneqq e^{-\frac{C\sigma^2}{2T}}, & \sigma^2 = \frac{1}{C} \sum_{c=1}^C \left\| \boldsymbol{x}^{(c)} - \bar{\boldsymbol{x}} \right\|^2 \\ Q \coloneqq \mathbb{E}_{\bar{\mathbb{W}}} \left(\prod_{c=1}^C \left[\exp \left\{ - \int_0^T \left(\phi_c(\boldsymbol{x}_t^{(c)}) - \Phi_c \right) \mathrm{d}t \right\} \right] \right) \end{cases}$$

where $\bar{\mathbb{W}}$ denotes the law of C independent Brownian bridges $\pmb{x}_t^{(1)},\ldots,\pmb{x}_t^{(C)}$ with $\pmb{x}_0=\pmb{x}^{(c)}$ and $\pmb{x}_T^{(c)}=\pmb{y}$

Rejection Sampling - acceptance probability

Acceptance probability:

$$\frac{g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})}{h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})} \propto \rho \cdot Q$$

where

$$\begin{cases} \rho := e^{-\frac{C\sigma^2}{2T}}, & \sigma^2 = \frac{1}{C} \sum_{c=1}^C \left\| \mathbf{x}^{(c)} - \bar{\mathbf{x}} \right\|^2 \\ Q := \mathbb{E}_{\bar{\mathbb{W}}} \left(\prod_{c=1}^C \left[\exp \left\{ - \int_0^T \left(\phi_c(\mathbf{x}_t^{(c)}) - \Phi_c \right) dt \right\} \right] \right) \end{cases}$$

where $\bar{\mathbb{W}}$ denotes the law of C independent Brownian bridges $\pmb{x}_t^{(1)},\ldots,\pmb{x}_t^{(C)}$ with $\pmb{x}_0=\pmb{x}^{(c)}$ and $\pmb{x}_T^{(c)}=\pmb{y}$

Q Acceptance Probability

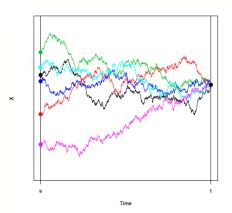
$$Q \coloneqq \mathbb{E}_{\bar{\mathbb{W}}} \Big(\prod_{c=1}^{\mathcal{C}} \Big[\exp \Big\{ - \int_{0}^{\mathcal{T}} \Big(\phi_{c}(\pmb{x}_{t}^{(c)}) - \Phi_{c} \Big) \mathrm{d}t \Big\} \Big] \Big)$$

where

- $\phi_c(\mathbf{x}) = \frac{1}{2} \Big(\|\nabla \log f_c(\mathbf{x})\|^2 + \Delta \log f_c(\mathbf{x}) \Big)$
- Φ_c are constants such that for all \mathbf{x} , $\phi_c(\mathbf{x}) \ge \Phi_c$ for $c \in \{1, \dots, C\}$
- Events of probability Q can be simulated using Poisson thinning and methodology called Path-space Rejection Sampling (PSRS) or the Exact Algorithm (Beskos et al. [2005], Beskos et al. [2006], Pollock et al. [2016])

Interpretation

• Correct a simple average \bar{x} of sub-posterior values to a Monte Carlo draw from $\pi(x)$ with acceptance probability $\rho \cdot Q$



• Proposal:

$$h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

• Accept y as a draw from fusion density π with probability:

$$rac{g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})}{h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})} \propto
ho \cdot \zeta$$

- Monte Carlo Fusion Algorithm:
 - 1. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{x}}, \frac{T \mathbb{I}_d}{C})$
 - 2. Accept \mathbf{y} with probability $\rho \cdot \mathbf{Q}$

• Proposal:

$$h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

• Accept ${\bf y}$ as a draw from fusion density π with probability:

$$\frac{g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})}{h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})} \propto \rho \cdot Q$$

- Monte Carlo Fusion Algorithm:
 - 1. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{x}}, \frac{T\mathbb{I}_d}{C})$
 - 2. Accept y with probability $\rho \cdot Q$

• Proposal:

$$h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

• Accept ${\bf y}$ as a draw from fusion density π with probability:

$$\frac{g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})}{h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})} \propto \rho \cdot Q$$

- Monte Carlo Fusion Algorithm:
 - 1. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{x}}, \frac{T \mathbb{I}_d}{C})$
 - 2. Accept y with probability $\rho \cdot Q$

Proposal:

$$h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y}) \propto \prod_{c=1}^{C} \left[f_c(\mathbf{x}^{(c)}) \right] \cdot \exp\left(-\frac{C \cdot \|\mathbf{y} - \bar{\mathbf{x}}\|^2}{2T}\right)$$

• Accept \mathbf{y} as a draw from fusion density π with probability:

$$\frac{g(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})}{h(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(C)},\mathbf{y})} \propto \rho \cdot Q$$

- Monte Carlo Fusion Algorithm:
 - 1. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{x}}, \frac{T\mathbb{I}_d}{C})$
 - 2. Accept \mathbf{y} with probability $\rho \cdot \mathbf{Q}$

Limitations of above rejection sampler

- 1. Scalability: the acceptance probability of Monte Carlo fusion can be small, especially when *C* is large or *d* is large
- 2. Use of simple average \bar{x} of sub-posterior samples as the proposal
 - but should we use a weighted average?
- 3. Use of same time T for each sub-posterior
 - but different cores / sub-posteriors could contain different amounts of information
- PSRS: methodology for PSRS can be computationally expensive

Aim: To construct a fusion algorithm / framework to alleviate some of these limitations

- 1. Scalability: the acceptance probability of Monte Carlo fusion can be small, especially when *C* is large or *d* is large
- 2. Use of simple average \bar{x} of sub-posterior samples as the proposal
 - but should we use a weighted average?
- 3. Use of same time T for each sub-posterior
 - but different cores / sub-posteriors could contain different amounts of information
- 4. PSRS: methodology for PSRS can be computationally expensive

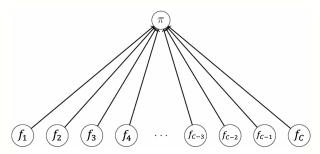
- 1. Scalability: the acceptance probability of Monte Carlo fusion can be small, especially when *C* is large or *d* is large
- 2. Use of simple average \bar{x} of sub-posterior samples as the proposal
 - but should we use a weighted average?
- 3. Use of same time T for each sub-posterior
 - but different cores / sub-posteriors could contain different amounts of information
- PSRS: methodology for PSRS can be computationally expensive

- 1. Scalability: the acceptance probability of Monte Carlo fusion can be small, especially when *C* is large or *d* is large
- 2. Use of simple average \bar{x} of sub-posterior samples as the proposal
 - but should we use a weighted average?
- 3. Use of same time T for each sub-posterior
 - but different cores / sub-posteriors could contain different amounts of information
- 4. PSRS: methodology for PSRS can be computationally expensive

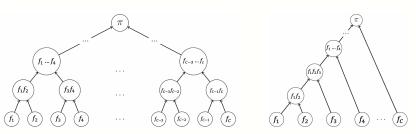
- 1. Scalability: the acceptance probability of Monte Carlo fusion can be small, especially when *C* is large or *d* is large
- 2. Use of simple average \bar{x} of sub-posterior samples as the proposal
 - but should we use a weighted average?
- 3. Use of same time T for each sub-posterior
 - but different cores / sub-posteriors could contain different amounts of information
- 4. PSRS: methodology for PSRS can be computationally expensive

1. Scalability with C

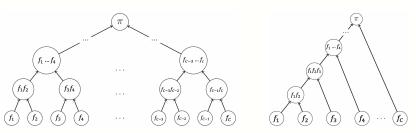
The Monte Carlo Fusion algorithm implies a fork-and-join approach:



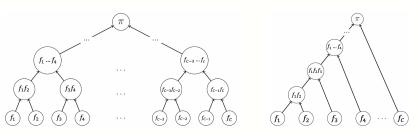
- Solution: Hierarchical Monte Carlo Fusion
 - We could perform fusion in a proper divide-and-conquer framework
 - Two possible choices are hierarchical (left) and progressive (right) trees



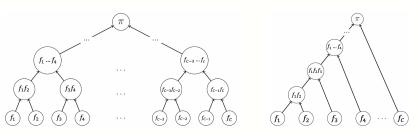
- Solution: Hierarchical Monte Carlo Fusion
 - We could perform fusion in a proper divide-and-conquer framework
 - Two possible choices are hierarchical (left) and progressive (right) trees



- Solution: Hierarchical Monte Carlo Fusion
 - We could perform fusion in a proper divide-and-conquer framework
 - Two possible choices are hierarchical (left) and progressive (right) trees



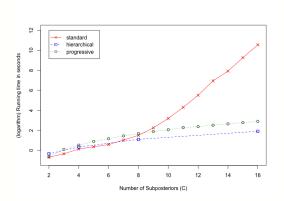
- Solution: Hierarchical Monte Carlo Fusion
 - We could perform fusion in a proper divide-and-conquer framework
 - Two possible choices are hierarchical (left) and progressive (right) trees



Example

• Target: $\pi(x) \propto e^{-\frac{x^4}{2}}$

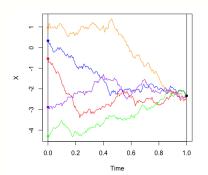
• Sub-posteriors: $f_c(x) = e^{-\frac{x^4}{2C}}$ for c = 1, ..., C

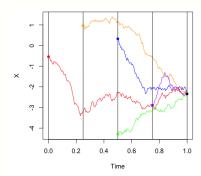


- 2. Use of simple average \bar{x} of sub-posterior samples as the proposal
- 3. Use of same time T for each sub-posterior

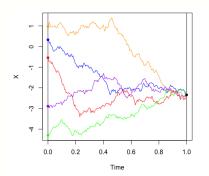
• Solution: Time-adapting Monte Carlo Fusion

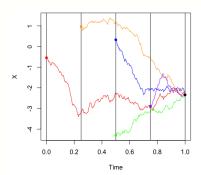
- We assign weights to each sub-posterior and use a weighted average: $\tilde{\mathbf{x}} = \sum_{c} w_{c} x^{(c)} / \sum_{c} w_{c}$
- Time T is adapted for each posterior: $T_c = \frac{T}{w_c}$ for $c = 1, \dots, C$



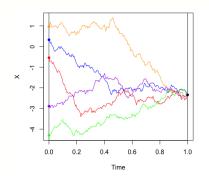


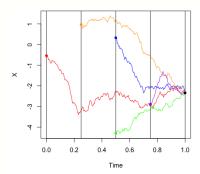
- Solution: Time-adapting Monte Carlo Fusion
 - We assign weights to each sub-posterior and use a weighted average: $\tilde{\mathbf{x}} = \sum_{c} w_{c} x^{(c)} / \sum_{c} w_{c}$
 - Time T is adapted for each posterior: $T_c = \frac{T}{w_c}$ for $c = 1, \dots, C$



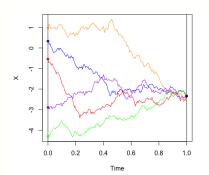


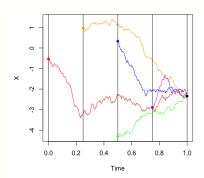
- Solution: Time-adapting Monte Carlo Fusion
 - We assign weights to each sub-posterior and use a weighted average: $\tilde{\mathbf{x}} = \sum_{c} w_{c} x^{(c)} / \sum_{c} w_{c}$
 - Time T is adapted for each posterior: $T_c = \frac{T}{w_c}$ for $c = 1, \dots, C$





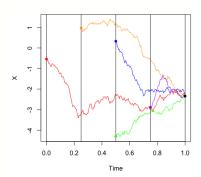
- Time-adapting Monte Carlo Fusion Algorithm:
 - 1. Choose time T and weights for sub-posteriors w_c , c = 1, ..., C
 - 2. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\tilde{\mathbf{x}}, \frac{T\mathbb{I}_d}{\sum_c w_c})$
 - 3. Accept y with probability $\rho^{ta} \cdot Q^{ta}$



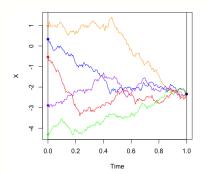


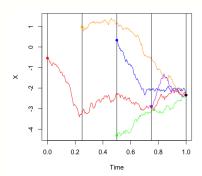
- Time-adapting Monte Carlo Fusion Algorithm:
 - 1. Choose time T and weights for sub-posteriors w_c , c = 1, ..., C
 - 2. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\tilde{\mathbf{x}}, \frac{T\mathbb{I}_d}{\sum_{\mathbf{x}} w_c})$
 - 3. Accept y with probability $\rho^{ta} \cdot Q^{ta}$



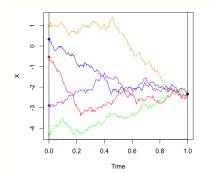


- Time-adapting Monte Carlo Fusion Algorithm:
 - 1. Choose time T and weights for sub-posteriors w_c , c = 1, ..., C
 - 2. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\tilde{\mathbf{x}}, \frac{T\mathbb{I}_d}{\sum_c w_c})$
 - 3. Accept y with probability $\rho^{ta} \cdot Q^{ta}$





- Time-adapting Monte Carlo Fusion Algorithm:
 - 1. Choose time T and weights for sub-posteriors w_c , c = 1, ..., C
 - 2. Simulate $\mathbf{x}^{(c)} \sim f_c(\mathbf{x})$ and $\mathbf{y} \sim \mathcal{N}(\tilde{\mathbf{x}}, \frac{T\mathbb{I}_d}{\sum_c w_c})$
 - 3. Accept y with probability $\rho^{ta} \cdot Q^{ta}$





4. PSRS: methodology for PSRS can be computationally expensive

- Solution: Sequential Monte Carlo in the hierarchical fusion framework
- Rejection sampling can be wasteful: large number of proposed samples are rejected
- Motives the use of Sequential Importance Sampling / Resampling ideas
 - Replace the rejection sampling steps with importance sampling steps
 - Fits into the Divide-and-Conquer SMC (D&C-SMC) framework by Lindsten et al. [2017]

- 4. PSRS: methodology for PSRS can be computationally expensive
 - Solution: Sequential Monte Carlo in the hierarchical fusion framework
 - Rejection sampling can be wasteful: large number of proposed samples are rejected
 - Motives the use of Sequential Importance Sampling / Resampling ideas
 - Replace the rejection sampling steps with importance sampling steps
 - Fits into the Divide-and-Conquer SMC (D&C-SMC) framework by Lindsten et al. [2017]

- 4. PSRS: methodology for PSRS can be computationally expensive
 - Solution: Sequential Monte Carlo in the hierarchical fusion framework
 - Rejection sampling can be wasteful: large number of proposed samples are rejected
 - Motives the use of Sequential Importance Sampling / Resampling ideas
 - Replace the rejection sampling steps with importance sampling steps
 - Fits into the Divide-and-Conquer SMC (D&C-SMC) framework by Lindsten et al. [2017]

- 4. PSRS: methodology for PSRS can be computationally expensive
 - Solution: Sequential Monte Carlo in the hierarchical fusion framework
 - Rejection sampling can be wasteful: large number of proposed samples are rejected
 - Motives the use of Sequential Importance Sampling / Resampling ideas
 - Replace the rejection sampling steps with importance sampling steps
 - Fits into the Divide-and-Conquer SMC (D&C-SMC) framework by Lindsten et al. [2017]

- 4. PSRS: methodology for PSRS can be computationally expensive
 - Solution: Sequential Monte Carlo in the hierarchical fusion framework
 - Rejection sampling can be wasteful: large number of proposed samples are rejected
 - Motives the use of Sequential Importance Sampling / Resampling ideas
 - Replace the rejection sampling steps with importance sampling steps
 - Fits into the Divide-and-Conquer SMC (D&C-SMC) framework by Lindsten et al. [2017]

- 4. PSRS: methodology for PSRS can be computationally expensive
 - Solution: Sequential Monte Carlo in the hierarchical fusion framework
 - Rejection sampling can be wasteful: large number of proposed samples are rejected
 - Motives the use of Sequential Importance Sampling / Resampling ideas
 - Replace the rejection sampling steps with importance sampling steps
 - Fits into the Divide-and-Conquer SMC (D&C-SMC) framework by Lindsten et al. [2017]

- Predicting if customers defaulted on their payments using gender and education levels (n = 30,000 and d = 5)
- Split into C = 32 subsets and apply the following methods:
 - 1. Consensus Monte Carlo [Scott et al., 2016]
 - 2. Kernel density averaging [Neiswanger et al., 2013]
 - 3. Weierstrass rejection sampler [Wang and Dunson, 2013]
 - 4. Weierstrass importance sampler [Wang and Dunson, 2013]
 - 5. Hierarchical Time-adapting SMC Fusion

- Predicting if customers defaulted on their payments using gender and education levels (n = 30,000 and d = 5)
- Split into C = 32 subsets and apply the following methods:
 - 1. Consensus Monte Carlo [Scott et al., 2016]
 - 2. Kernel density averaging [Neiswanger et al., 2013]
 - 3. Weierstrass rejection sampler [Wang and Dunson, 2013]
 - 4. Weierstrass importance sampler [Wang and Dunson, 2013]
 - 5. Hierarchical Time-adapting SMC Fusion

- Choose a time T=0.5
- Use balanced hierarchical tree where we combine m=2 sub-posteriors at each level, i.e. have L=6 levels in the tree
- Weights are chosen according to how much data they have relative to the bottom level:
 - At L = 6: sub-posteriors are given weight $w_c = 1$ for $c = 1, \dots, 32$, i.e. $T_c = 0.5$
 - At L=5: sub-posteriors are given weight $w_c=2$ for $c=1,\ldots,16$ (have twice more data than the start), i.e. $T_c=\frac{0.5}{2}=0.25$
 - and so on up the levels...

- Choose a time T = 0.5
- Use balanced hierarchical tree where we combine m=2 sub-posteriors at each level, i.e. have L=6 levels in the tree
- Weights are chosen according to how much data they have relative to the bottom level:
 - At L = 6: sub-posteriors are given weight $w_c = 1$ for $c = 1, \dots, 32$, i.e. $T_c = 0.5$
 - At L=5: sub-posteriors are given weight $w_c=2$ for $c=1,\ldots,16$ (have twice more data than the start), i.e. $T_c=\frac{0.5}{2}=0.25$
 - and so on up the levels...

- Choose a time T = 0.5
- Use balanced hierarchical tree where we combine m=2 sub-posteriors at each level, i.e. have L=6 levels in the tree
- Weights are chosen according to how much data they have relative to the bottom level:
 - At L = 6: sub-posteriors are given weight $w_c = 1$ for $c = 1, \dots, 32$, i.e. $T_c = 0.5$
 - At L=5: sub-posteriors are given weight $w_c=2$ for $c=1,\ldots,16$ (have twice more data than the start), i.e $T_c=\frac{0.5}{2}=0.25$
 - and so on up the levels...

- Choose a time T=0.5
- Use balanced hierarchical tree where we combine m=2 sub-posteriors at each level, i.e. have L=6 levels in the tree
- Weights are chosen according to how much data they have relative to the bottom level:
 - At L = 6: sub-posteriors are given weight $w_c = 1$ for $c = 1, \dots, 32$, i.e. $T_c = 0.5$
 - At L=5: sub-posteriors are given weight $w_c=2$ for $c=1,\ldots,16$ (have twice more data than the start), i.e $T_c=\frac{0.5}{2}=0.25$
 - and so on up the levels...

- Choose a time T=0.5
- Use balanced hierarchical tree where we combine m=2 sub-posteriors at each level, i.e. have L=6 levels in the tree
- Weights are chosen according to how much data they have relative to the bottom level:
 - At L = 6: sub-posteriors are given weight $w_c = 1$ for $c = 1, \dots, 32$, i.e. $T_c = 0.5$
 - At L=5: sub-posteriors are given weight $w_c=2$ for $c=1,\ldots,16$ (have twice more data than the start), i.e. $T_c=\frac{0.5}{2}=0.25$
 - and so on up the levels...

- Choose a time T=0.5
- Use balanced hierarchical tree where we combine m=2 sub-posteriors at each level, i.e. have L=6 levels in the tree
- Weights are chosen according to how much data they have relative to the bottom level:
 - At L = 6: sub-posteriors are given weight $w_c = 1$ for $c = 1, \dots, 32$, i.e. $T_c = 0.5$
 - At L=5: sub-posteriors are given weight $w_c=2$ for $c=1,\ldots,16$ (have twice more data than the start), i.e. $T_c=\frac{0.5}{2}=0.25$
 - and so on up the levels...

- Choose a time T=0.5
- Use balanced hierarchical tree where we combine m=2 sub-posteriors at each level, i.e. have L=6 levels in the tree
- Weights are chosen according to how much data they have relative to the bottom level:
 - At L = 6: sub-posteriors are given weight $w_c = 1$ for $c = 1, \dots, 32$, i.e. $T_c = 0.5$
 - At L=5: sub-posteriors are given weight $w_c=2$ for $c=1,\ldots,16$ (have twice more data than the start), i.e. $T_c=\frac{0.5}{2}=0.25$
 - and so on up the levels...

To compare methods we calculate the integrated absolute distance

$$IAD = \frac{1}{2d} \sum_{j=1}^{d} \int \left| \hat{f}(\mathbf{x}_j) - f(\mathbf{x}_j) \right| dx_j$$

where $\hat{f}(x_j)$ is the marginal density for x_j based on the method applied and $f(x_j)$ is the benchmark estimate (obtained using NUTS with Stan)

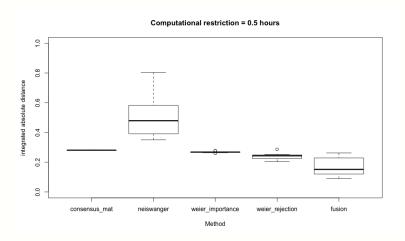
Fix computational cost by restricting run-time allowed for algorithm

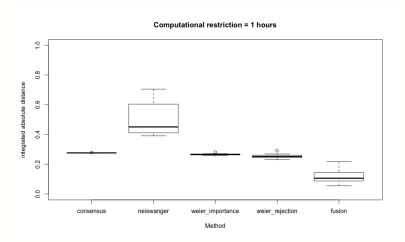
To compare methods we calculate the integrated absolute distance

$$IAD = \frac{1}{2d} \sum_{j=1}^{d} \int \left| \hat{f}(\mathbf{x}_j) - f(\mathbf{x}_j) \right| dx_j$$

where $\hat{f}(x_j)$ is the marginal density for x_j based on the method applied and $f(x_j)$ is the benchmark estimate (obtained using NUTS with Stan)

 Fix computational cost by restricting run-time allowed for algorithm





- Combining conflicting sub-posteriors
- Confidential fusion (Con-fusion): where sharing information/data between cores is not permitted
- Bayesian Fusion: tailored to big data Bayesian problems
- Different proposals: e.g. Ornstein-Uhlenbeck bridges, more general Langevin diffusion with pre-conditioning matrix for each sub-posterior
- Theory for D&C-SMC with Monte Carlo Fusion

- Combining conflicting sub-posteriors
- Confidential fusion (Con-fusion): where sharing information/data between cores is not permitted
- Bayesian Fusion: tailored to big data Bayesian problems
- Different proposals: e.g. Ornstein-Uhlenbeck bridges, more general Langevin diffusion with pre-conditioning matrix for each sub-posterior
- Theory for D&C-SMC with Monte Carlo Fusion

- Combining conflicting sub-posteriors
- Confidential fusion (Con-fusion): where sharing information/data between cores is not permitted
- Bayesian Fusion: tailored to big data Bayesian problems
- Different proposals: e.g. Ornstein-Uhlenbeck bridges, more general Langevin diffusion with pre-conditioning matrix for each sub-posterior
- Theory for D&C-SMC with Monte Carlo Fusion

- Combining conflicting sub-posteriors
- Confidential fusion (Con-fusion): where sharing information/data between cores is not permitted
- Bayesian Fusion: tailored to big data Bayesian problems
- Different proposals: e.g. Ornstein-Uhlenbeck bridges, more general Langevin diffusion with pre-conditioning matrix for each sub-posterior
- Theory for D&C-SMC with Monte Carlo Fusion

- Combining conflicting sub-posteriors
- Confidential fusion (Con-fusion): where sharing information/data between cores is not permitted
- Bayesian Fusion: tailored to big data Bayesian problems
- Different proposals: e.g. Ornstein-Uhlenbeck bridges, more general Langevin diffusion with pre-conditioning matrix for each sub-posterior
- Theory for D&C-SMC with Monte Carlo Fusion

References

- Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):333-382.
- Beskos, A., Roberts, G. O., et al. (2005). Exact simulation of diffusions. *The Annals of Applied Probability*, 15(4):2422–2444.
- Dai, H., Pollock, M., and Roberts, G. (2019). Monte Carlo Fusion. Journal of Applied Probability, 56(1):174-191.
- Lindsten, F., Johansen, A. M., Naesseth, C. A., Kirkpatrick, B., Schön, T. B., Aston, J., and Bouchard-Côté, A. (2017). Divide-and-conquer with Sequential Monte Carlo. *Journal of Computational and Graphical Statistics*, 26(2):445–458.
- Neiswanger, W., Wang, C., and Xing, E. (2013). Asymptotically exact, embarrassingly parallel MCMC. arXiv preprint arXiv:1311.4780.
- Pollock, M., Johansen, A. M., Roberts, G. O., et al. (2016). On the exact and ε-strong simulation of (jump) diffusions. *Bernoulli*, 22(2):794–856.
- Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch, R. E. (2016). Bayes and big data: The consensus Monte Carlo algorithm. *International Journal of Management Science and Engineering Management*, 11(2):78–88.
- Wang, X. and Dunson, D. B. (2013). Parallelizing MCMC via Weierstrass Sampler. arXiv e-prints, page arXiv:1312.4605.