
1/31

Hierarchical Monte Carlo Fusion

Hierarchical Monte Carlo Fusion
Ryan Chan

Murray Pollock (Newcastle), Adam Johansen (Warwick), Gareth Roberts (Warwick)

21 April 2020

2/31

Hierarchical Monte Carlo Fusion

Outline

Monte Carlo Fusion
Fork-and-join
Constructing a rejection sampler
Double Langevin Approach

Hierarchical Fusion
Time-adapting Monte Carlo Fusion
Divide-and-Conquer SMC with Fusion

Logistic Regression Example

Ongoing directions

3/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion Problem

• Target:

π(x) ∝
C∏

c=1

fc(x)

where each sub-posterior, fc(x), is a density representing one
of the C distributed inferences we wish to unify

• Assume we can sample x (c) ∼ fc(x)
• Applications:

• Expert elicitation: combining views of multiple experts
• Privacy setting
• Big Data (by construction)
• Tempering (by construction)

3/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion Problem

• Target:

π(x) ∝
C∏

c=1

fc(x)

where each sub-posterior, fc(x), is a density representing one
of the C distributed inferences we wish to unify

• Assume we can sample x (c) ∼ fc(x)
• Applications:

• Expert elicitation: combining views of multiple experts
• Privacy setting
• Big Data (by construction)
• Tempering (by construction)

3/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion Problem

• Target:

π(x) ∝
C∏

c=1

fc(x)

where each sub-posterior, fc(x), is a density representing one
of the C distributed inferences we wish to unify

• Assume we can sample x (c) ∼ fc(x)
• Applications:

• Expert elicitation: combining views of multiple experts
• Privacy setting
• Big Data (by construction)
• Tempering (by construction)

4/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Big Data

• Consider we have data x with a large number of observations
n
• The likelihood `(x | θ) becomes expensive to calculate

• This makes MCMC prohibitively slow for big data

• Potential solution:

π(θ | x) ∝
n∏

i=1

`(x | θ)π(θ) =
C∏

c=1

`(xc | θ)π(θ)
1
C

where xc denotes the c-th subset for c = 1, . . . ,C and

π(θ) =
∏C

c=1 π(θ)
1
C is the prior

• Advantage: inference on each smaller dataset can be
conducted independently and in parellel

4/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Big Data

• Consider we have data x with a large number of observations
n
• The likelihood `(x | θ) becomes expensive to calculate

• This makes MCMC prohibitively slow for big data

• Potential solution:

π(θ | x) ∝
n∏

i=1

`(x | θ)π(θ) =
C∏

c=1

`(xc | θ)π(θ)
1
C

where xc denotes the c-th subset for c = 1, . . . ,C and

π(θ) =
∏C

c=1 π(θ)
1
C is the prior

• Advantage: inference on each smaller dataset can be
conducted independently and in parellel

4/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Big Data

• Consider we have data x with a large number of observations
n
• The likelihood `(x | θ) becomes expensive to calculate

• This makes MCMC prohibitively slow for big data

• Potential solution:

π(θ | x) ∝
n∏

i=1

`(x | θ)π(θ) =
C∏

c=1

`(xc | θ)π(θ)
1
C

where xc denotes the c-th subset for c = 1, . . . ,C and

π(θ) =
∏C

c=1 π(θ)
1
C is the prior

• Advantage: inference on each smaller dataset can be
conducted independently and in parellel

4/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Big Data

• Consider we have data x with a large number of observations
n
• The likelihood `(x | θ) becomes expensive to calculate

• This makes MCMC prohibitively slow for big data

• Potential solution:

π(θ | x) ∝
n∏

i=1

`(x | θ)π(θ) =
C∏

c=1

`(xc | θ)π(θ)
1
C

where xc denotes the c-th subset for c = 1, . . . ,C and

π(θ) =
∏C

c=1 π(θ)
1
C is the prior

• Advantage: inference on each smaller dataset can be
conducted independently and in parellel

4/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Big Data

• Consider we have data x with a large number of observations
n
• The likelihood `(x | θ) becomes expensive to calculate

• This makes MCMC prohibitively slow for big data

• Potential solution:

π(θ | x) ∝
n∏

i=1

`(x | θ)π(θ) =
C∏

c=1

`(xc | θ)π(θ)
1
C

where xc denotes the c-th subset for c = 1, . . . ,C and

π(θ) =
∏C

c=1 π(θ)
1
C is the prior

• Advantage: inference on each smaller dataset can be
conducted independently and in parellel

5/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Tempering

• Consider the power-tempered target distribution
πβ(x) = [π(x)]β for β ∈ (0, 1]

• MCMC can become computationally expensive to sample
from multi-modal densities and can get stuck in modes

• Potential solution:

π(x) = π(x)
1
β
·β =

1
β∏

c=1

πβ(x)

where 1
β ∈ N

5/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Tempering

• Consider the power-tempered target distribution
πβ(x) = [π(x)]β for β ∈ (0, 1]

• MCMC can become computationally expensive to sample
from multi-modal densities and can get stuck in modes

• Potential solution:

π(x) = π(x)
1
β
·β =

1
β∏

c=1

πβ(x)

where 1
β ∈ N

5/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fusion for Tempering

• Consider the power-tempered target distribution
πβ(x) = [π(x)]β for β ∈ (0, 1]

• MCMC can become computationally expensive to sample
from multi-modal densities and can get stuck in modes

• Potential solution:

π(x) = π(x)
1
β
·β =

1
β∏

c=1

πβ(x)

where 1
β ∈ N

6/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Fork-and-join

The fork-and-join approach:

7/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Current Fork-and-Join Methods

• Several fork-and-join methods have been developed. For
instance
• Kernel density averaging [Neiswanger et al., 2013]
• Weierstrass sampler [Wang and Dunson, 2013]
• Consensus Monte Carlo [Scott et al., 2016]

• A primary weakness of these methods is that the
recombination is inexact in general and involve approximations

• However, Monte Carlo Fusion [Dai et al., 2019] is exact

7/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Current Fork-and-Join Methods

• Several fork-and-join methods have been developed. For
instance
• Kernel density averaging [Neiswanger et al., 2013]
• Weierstrass sampler [Wang and Dunson, 2013]
• Consensus Monte Carlo [Scott et al., 2016]

• A primary weakness of these methods is that the
recombination is inexact in general and involve approximations

• However, Monte Carlo Fusion [Dai et al., 2019] is exact

7/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Fork-and-join

Current Fork-and-Join Methods

• Several fork-and-join methods have been developed. For
instance
• Kernel density averaging [Neiswanger et al., 2013]
• Weierstrass sampler [Wang and Dunson, 2013]
• Consensus Monte Carlo [Scott et al., 2016]

• A primary weakness of these methods is that the
recombination is inexact in general and involve approximations

• However, Monte Carlo Fusion [Dai et al., 2019] is exact

8/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Constructing a rejection sampler - An Extended Target

Proposition

Suppose that pc(y | x (c)) is the transition density of a stochastic
process with stationary distribution f 2

c (x). The
(C + 1)d-dimensional (fusion) density proportional to the
integrable function

g(x (1), . . . , x (C), y) ∝
C∏

c=1

[
f 2
c (x (c))pc(y | x (c)) · 1

fc(y)

]
admits the marginal density π for y .

• Main idea: If we can sample from g , then we can can obtain a
draw from the fusion density (y ∼ π)

8/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Constructing a rejection sampler - An Extended Target

Proposition

Suppose that pc(y | x (c)) is the transition density of a stochastic
process with stationary distribution f 2

c (x). The
(C + 1)d-dimensional (fusion) density proportional to the
integrable function

g(x (1), . . . , x (C), y) ∝
C∏

c=1

[
f 2
c (x (c))pc(y | x (c)) · 1

fc(y)

]
admits the marginal density π for y .

• Main idea: If we can sample from g , then we can can obtain a
draw from the fusion density (y ∼ π)

9/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

• There are many possible choices for pc(y | x)

• Let pc(y | x) := pT ,c(y | x), the transition density of the
d-dimensional (double) Langevin (DL) diffusion processes

X (c)
t for c = 1, . . . ,C , from x to y for a pre-defined time

T > 0 given by

dX (c)
t = ∇ log fc(X (c)

t)dt + dW c
t ,

• W (c)
t is d-dimensional Brownian motion

• ∇ is the gradient operator over x
• Has stationary distribution f 2

c (x)

9/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

• There are many possible choices for pc(y | x)

• Let pc(y | x) := pT ,c(y | x), the transition density of the
d-dimensional (double) Langevin (DL) diffusion processes

X (c)
t for c = 1, . . . ,C , from x to y for a pre-defined time

T > 0 given by

dX (c)
t = ∇ log fc(X (c)

t)dt + dW c
t ,

• W (c)
t is d-dimensional Brownian motion

• ∇ is the gradient operator over x
• Has stationary distribution f 2

c (x)

10/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

• Extended Target Density:

g(x (1), . . . , x (C), y) ∝
C∏

c=1

[
f 2
c (x (c))pT ,c(y | x (c)) · 1

fc(y)

]

• Consider the proposal density h for the extended target g :

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)
• x̄ = 1

C

∑C
c=1 x (c)

• T is an arbitrary positive constant

10/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

• Extended Target Density:

g(x (1), . . . , x (C), y) ∝
C∏

c=1

[
f 2
c (x (c))pT ,c(y | x (c)) · 1

fc(y)

]

• Consider the proposal density h for the extended target g :

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)
• x̄ = 1

C

∑C
c=1 x (c)

• T is an arbitrary positive constant

11/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

• Simulation from h is easy:

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)

1. Simulate x (c) ∼ fc(x) independently

2. Simulate y ∼ N (x̄ , T Id
C)

11/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

• Simulation from h is easy:

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)

1. Simulate x (c) ∼ fc(x) independently

2. Simulate y ∼ N (x̄ , T Id
C)

11/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

• Simulation from h is easy:

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)

1. Simulate x (c) ∼ fc(x) independently

2. Simulate y ∼ N (x̄ , T Id
C)

12/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling - acceptance probability

• Acceptance probability:

g(x (1), . . . , x (C), y)

h(x (1), . . . , x (C), y)
∝ ρ · Q

where
ρ := e−

Cσ2

2T , σ2 = 1
C

∑C
c=1

∥∥x (c) − x̄
∥∥2

Q := EW̄

(∏C
c=1

[
exp
{
−
∫ T

0

(
φc(x (c)

t)− Φc

)
dt
}])

where W̄ denotes the law of C independent Brownian bridges

x (1)
t , . . . , x (C)

t with x0 = x (c) and x (c)
T = y

12/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling - acceptance probability

• Acceptance probability:

g(x (1), . . . , x (C), y)

h(x (1), . . . , x (C), y)
∝ ρ · Q

where
ρ := e−

Cσ2

2T , σ2 = 1
C

∑C
c=1

∥∥x (c) − x̄
∥∥2

Q := EW̄

(∏C
c=1

[
exp
{
−
∫ T

0

(
φc(x (c)

t)− Φc

)
dt
}])

where W̄ denotes the law of C independent Brownian bridges

x (1)
t , . . . , x (C)

t with x0 = x (c) and x (c)
T = y

13/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Rejection Sampling - acceptance probability

• Acceptance probability:

g(x (1), . . . , x (C), y)

h(x (1), . . . , x (C), y)
∝ ρ · Q

where
ρ := e−

Cσ2

2T , σ2 = 1
C

∑C
c=1

∥∥x (c) − x̄
∥∥2

Q := EW̄

(∏C
c=1

[
exp
{
−
∫ T

0

(
φc(x (c)

t)− Φc

)
dt
}])

where W̄ denotes the law of C independent Brownian bridges

x (1)
t , . . . , x (C)

t with x0 = x (c) and x (c)
T = y

14/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Q Acceptance Probability

Q := EW̄

(C∏
c=1

[
exp

{
−
∫ T

0

(
φc(x (c)

t)− Φc

)
dt
}])

where

• φc(x) = 1
2

(
‖∇ log fc(x)‖2 + ∆ log fc(x)

)
• Φc are constants such that for all x , φc(x) ≥ Φc for
c ∈ {1, . . . ,C}
• Events of probability Q can be simulated using Poisson

thinning and methodology called Path-space Rejection
Sampling (PSRS) or the Exact Algorithm (Beskos et al.
[2005], Beskos et al. [2006], Pollock et al. [2016])

15/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Constructing a rejection sampler

Interpretation

• Correct a simple average x̄ of sub-posterior values to a Monte
Carlo draw from π(x) with acceptance probability ρ · Q

16/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Double Langevin Approach

Double Langevin Approach - Summary

• Proposal:

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)

• Accept y as a draw from fusion density π with probability:

g(x (1), . . . , x (C), y)

h(x (1), . . . , x (C), y)
∝ ρ · Q

• Monte Carlo Fusion Algorithm:

1. Simulate x (c) ∼ fc(x) and y ∼ N (x̄ , T Id
C)

2. Accept y with probability ρ · Q

16/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Double Langevin Approach

Double Langevin Approach - Summary

• Proposal:

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)

• Accept y as a draw from fusion density π with probability:

g(x (1), . . . , x (C), y)

h(x (1), . . . , x (C), y)
∝ ρ · Q

• Monte Carlo Fusion Algorithm:

1. Simulate x (c) ∼ fc(x) and y ∼ N (x̄ , T Id
C)

2. Accept y with probability ρ · Q

16/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Double Langevin Approach

Double Langevin Approach - Summary

• Proposal:

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)

• Accept y as a draw from fusion density π with probability:

g(x (1), . . . , x (C), y)

h(x (1), . . . , x (C), y)
∝ ρ · Q

• Monte Carlo Fusion Algorithm:

1. Simulate x (c) ∼ fc(x) and y ∼ N (x̄ , T Id
C)

2. Accept y with probability ρ · Q

16/31

Hierarchical Monte Carlo Fusion

Monte Carlo Fusion

Double Langevin Approach

Double Langevin Approach - Summary

• Proposal:

h(x (1), . . . , x (C), y) ∝
C∏

c=1

[
fc
(
x (c)

)]
· exp

(
− C · ‖y − x̄‖2

2T

)

• Accept y as a draw from fusion density π with probability:

g(x (1), . . . , x (C), y)

h(x (1), . . . , x (C), y)
∝ ρ · Q

• Monte Carlo Fusion Algorithm:

1. Simulate x (c) ∼ fc(x) and y ∼ N (x̄ , T Id
C)

2. Accept y with probability ρ · Q

17/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Limitations of above rejection sampler

1. Scalability: the acceptance probability of Monte Carlo fusion
can be small, especially when C is large or d is large

2. Use of simple average x̄ of sub-posterior samples as the
proposal
• but should we use a weighted average?

3. Use of same time T for each sub-posterior
• but different cores / sub-posteriors could contain different

amounts of information

4. PSRS: methodology for PSRS can be computationally
expensive

Aim: To construct a fusion algorithm / framework to alleviate
some of these limitations

17/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Limitations of above rejection sampler

1. Scalability: the acceptance probability of Monte Carlo fusion
can be small, especially when C is large or d is large

2. Use of simple average x̄ of sub-posterior samples as the
proposal
• but should we use a weighted average?

3. Use of same time T for each sub-posterior
• but different cores / sub-posteriors could contain different

amounts of information

4. PSRS: methodology for PSRS can be computationally
expensive

Aim: To construct a fusion algorithm / framework to alleviate
some of these limitations

17/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Limitations of above rejection sampler

1. Scalability: the acceptance probability of Monte Carlo fusion
can be small, especially when C is large or d is large

2. Use of simple average x̄ of sub-posterior samples as the
proposal
• but should we use a weighted average?

3. Use of same time T for each sub-posterior
• but different cores / sub-posteriors could contain different

amounts of information

4. PSRS: methodology for PSRS can be computationally
expensive

Aim: To construct a fusion algorithm / framework to alleviate
some of these limitations

17/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Limitations of above rejection sampler

1. Scalability: the acceptance probability of Monte Carlo fusion
can be small, especially when C is large or d is large

2. Use of simple average x̄ of sub-posterior samples as the
proposal
• but should we use a weighted average?

3. Use of same time T for each sub-posterior
• but different cores / sub-posteriors could contain different

amounts of information

4. PSRS: methodology for PSRS can be computationally
expensive

Aim: To construct a fusion algorithm / framework to alleviate
some of these limitations

17/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Limitations of above rejection sampler

1. Scalability: the acceptance probability of Monte Carlo fusion
can be small, especially when C is large or d is large

2. Use of simple average x̄ of sub-posterior samples as the
proposal
• but should we use a weighted average?

3. Use of same time T for each sub-posterior
• but different cores / sub-posteriors could contain different

amounts of information

4. PSRS: methodology for PSRS can be computationally
expensive

Aim: To construct a fusion algorithm / framework to alleviate
some of these limitations

18/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Hierarchical Monte Carlo Fusion

1. Scalability with C

The Monte Carlo Fusion algorithm implies a fork-and-join
approach:

19/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Hierarchical Monte Carlo Fusion

• Solution: Hierarchical Monte Carlo Fusion
• We could perform fusion in a proper divide-and-conquer

framework
• Two possible choices are hierarchical (left) and progressive

(right) trees

Note: Other trees are possible

19/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Hierarchical Monte Carlo Fusion

• Solution: Hierarchical Monte Carlo Fusion
• We could perform fusion in a proper divide-and-conquer

framework
• Two possible choices are hierarchical (left) and progressive

(right) trees

Note: Other trees are possible

19/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Hierarchical Monte Carlo Fusion

• Solution: Hierarchical Monte Carlo Fusion
• We could perform fusion in a proper divide-and-conquer

framework
• Two possible choices are hierarchical (left) and progressive

(right) trees

Note: Other trees are possible

19/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Hierarchical Monte Carlo Fusion

• Solution: Hierarchical Monte Carlo Fusion
• We could perform fusion in a proper divide-and-conquer

framework
• Two possible choices are hierarchical (left) and progressive

(right) trees

Note: Other trees are possible

20/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Example

• Target: π(x) ∝ e−
x4

2

• Sub-posteriors: fc(x) = e−
x4

2C for c = 1, . . . ,C

21/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

2. Use of simple average x̄ of sub-posterior samples as the proposal
3. Use of same time T for each sub-posterior

22/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

• Solution: Time-adapting Monte Carlo Fusion
• We assign weights to each sub-posterior and use a weighted

average: x̃ =
∑

c wcx
(c)/
∑

c wc

• Time T is adapted for each posterior: Tc = T
wc

for
c = 1, . . . ,C

22/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

• Solution: Time-adapting Monte Carlo Fusion
• We assign weights to each sub-posterior and use a weighted

average: x̃ =
∑

c wcx
(c)/
∑

c wc

• Time T is adapted for each posterior: Tc = T
wc

for
c = 1, . . . ,C

22/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

• Solution: Time-adapting Monte Carlo Fusion
• We assign weights to each sub-posterior and use a weighted

average: x̃ =
∑

c wcx
(c)/
∑

c wc

• Time T is adapted for each posterior: Tc = T
wc

for
c = 1, . . . ,C

23/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

• Time-adapting Monte Carlo Fusion Algorithm:

1. Choose time T and weights for sub-posteriors wc , c = 1, . . . ,C
2. Simulate x (c) ∼ fc(x) and y ∼ N (x̃ , T Id∑

c wc
)

3. Accept y with probability ρta · Qta

23/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

• Time-adapting Monte Carlo Fusion Algorithm:

1. Choose time T and weights for sub-posteriors wc , c = 1, . . . ,C
2. Simulate x (c) ∼ fc(x) and y ∼ N (x̃ , T Id∑

c wc
)

3. Accept y with probability ρta · Qta

23/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

• Time-adapting Monte Carlo Fusion Algorithm:

1. Choose time T and weights for sub-posteriors wc , c = 1, . . . ,C
2. Simulate x (c) ∼ fc(x) and y ∼ N (x̃ , T Id∑

c wc
)

3. Accept y with probability ρta · Qta

23/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Time-adapting Monte Carlo Fusion

Time-adapting Monte Carlo Fusion

• Time-adapting Monte Carlo Fusion Algorithm:

1. Choose time T and weights for sub-posteriors wc , c = 1, . . . ,C
2. Simulate x (c) ∼ fc(x) and y ∼ N (x̃ , T Id∑

c wc
)

3. Accept y with probability ρta · Qta

24/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Divide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC

4. PSRS: methodology for PSRS can be computationally expensive

• Solution: Sequential Monte Carlo in the hierarchical fusion
framework

• Rejection sampling can be wasteful: large number of proposed
samples are rejected
• Motives the use of Sequential Importance Sampling /

Resampling ideas
• Replace the rejection sampling steps with importance sampling

steps
• Fits into the Divide-and-Conquer SMC (D&C-SMC)

framework by Lindsten et al. [2017]

24/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Divide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC

4. PSRS: methodology for PSRS can be computationally expensive

• Solution: Sequential Monte Carlo in the hierarchical fusion
framework

• Rejection sampling can be wasteful: large number of proposed
samples are rejected
• Motives the use of Sequential Importance Sampling /

Resampling ideas
• Replace the rejection sampling steps with importance sampling

steps
• Fits into the Divide-and-Conquer SMC (D&C-SMC)

framework by Lindsten et al. [2017]

24/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Divide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC

4. PSRS: methodology for PSRS can be computationally expensive

• Solution: Sequential Monte Carlo in the hierarchical fusion
framework

• Rejection sampling can be wasteful: large number of proposed
samples are rejected
• Motives the use of Sequential Importance Sampling /

Resampling ideas
• Replace the rejection sampling steps with importance sampling

steps
• Fits into the Divide-and-Conquer SMC (D&C-SMC)

framework by Lindsten et al. [2017]

24/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Divide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC

4. PSRS: methodology for PSRS can be computationally expensive

• Solution: Sequential Monte Carlo in the hierarchical fusion
framework

• Rejection sampling can be wasteful: large number of proposed
samples are rejected
• Motives the use of Sequential Importance Sampling /

Resampling ideas
• Replace the rejection sampling steps with importance sampling

steps
• Fits into the Divide-and-Conquer SMC (D&C-SMC)

framework by Lindsten et al. [2017]

24/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Divide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC

4. PSRS: methodology for PSRS can be computationally expensive

• Solution: Sequential Monte Carlo in the hierarchical fusion
framework

• Rejection sampling can be wasteful: large number of proposed
samples are rejected
• Motives the use of Sequential Importance Sampling /

Resampling ideas
• Replace the rejection sampling steps with importance sampling

steps
• Fits into the Divide-and-Conquer SMC (D&C-SMC)

framework by Lindsten et al. [2017]

24/31

Hierarchical Monte Carlo Fusion

Hierarchical Fusion

Divide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC

4. PSRS: methodology for PSRS can be computationally expensive

• Solution: Sequential Monte Carlo in the hierarchical fusion
framework

• Rejection sampling can be wasteful: large number of proposed
samples are rejected
• Motives the use of Sequential Importance Sampling /

Resampling ideas
• Replace the rejection sampling steps with importance sampling

steps
• Fits into the Divide-and-Conquer SMC (D&C-SMC)

framework by Lindsten et al. [2017]

25/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

• Predicting if customers defaulted on their payments using
gender and education levels (n = 30, 000 and d = 5)
• Split into C = 32 subsets and apply the following methods:

1. Consensus Monte Carlo [Scott et al., 2016]
2. Kernel density averaging [Neiswanger et al., 2013]
3. Weierstrass rejection sampler [Wang and Dunson, 2013]
4. Weierstrass importance sampler [Wang and Dunson, 2013]
5. Hierarchical Time-adapting SMC Fusion

25/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

• Predicting if customers defaulted on their payments using
gender and education levels (n = 30, 000 and d = 5)
• Split into C = 32 subsets and apply the following methods:

1. Consensus Monte Carlo [Scott et al., 2016]
2. Kernel density averaging [Neiswanger et al., 2013]
3. Weierstrass rejection sampler [Wang and Dunson, 2013]
4. Weierstrass importance sampler [Wang and Dunson, 2013]
5. Hierarchical Time-adapting SMC Fusion

26/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

How to apply Hierarchical Time-adapting SMC Fusion

• Choose a time T = 0.5

• Use balanced hierarchical tree where we combine m = 2
sub-posteriors at each level, i.e. have L = 6 levels in the tree
• Weights are chosen according to how much data they have

relative to the bottom level:
• At L = 6: sub-posteriors are given weight wc = 1 for

c = 1, . . . , 32, i.e. Tc = 0.5
• At L = 5: sub-posteriors are given weight wc = 2 for

c = 1, . . . , 16 (have twice more data than the start), i.e.
Tc = 0.5

2 = 0.25
• and so on up the levels...

26/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

How to apply Hierarchical Time-adapting SMC Fusion

• Choose a time T = 0.5

• Use balanced hierarchical tree where we combine m = 2
sub-posteriors at each level, i.e. have L = 6 levels in the tree
• Weights are chosen according to how much data they have

relative to the bottom level:
• At L = 6: sub-posteriors are given weight wc = 1 for

c = 1, . . . , 32, i.e. Tc = 0.5
• At L = 5: sub-posteriors are given weight wc = 2 for

c = 1, . . . , 16 (have twice more data than the start), i.e.
Tc = 0.5

2 = 0.25
• and so on up the levels...

26/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

How to apply Hierarchical Time-adapting SMC Fusion

• Choose a time T = 0.5

• Use balanced hierarchical tree where we combine m = 2
sub-posteriors at each level, i.e. have L = 6 levels in the tree
• Weights are chosen according to how much data they have

relative to the bottom level:
• At L = 6: sub-posteriors are given weight wc = 1 for

c = 1, . . . , 32, i.e. Tc = 0.5
• At L = 5: sub-posteriors are given weight wc = 2 for

c = 1, . . . , 16 (have twice more data than the start), i.e.
Tc = 0.5

2 = 0.25
• and so on up the levels...

26/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

How to apply Hierarchical Time-adapting SMC Fusion

• Choose a time T = 0.5

• Use balanced hierarchical tree where we combine m = 2
sub-posteriors at each level, i.e. have L = 6 levels in the tree
• Weights are chosen according to how much data they have

relative to the bottom level:
• At L = 6: sub-posteriors are given weight wc = 1 for

c = 1, . . . , 32, i.e. Tc = 0.5
• At L = 5: sub-posteriors are given weight wc = 2 for

c = 1, . . . , 16 (have twice more data than the start), i.e.
Tc = 0.5

2 = 0.25
• and so on up the levels...

26/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

How to apply Hierarchical Time-adapting SMC Fusion

• Choose a time T = 0.5

• Use balanced hierarchical tree where we combine m = 2
sub-posteriors at each level, i.e. have L = 6 levels in the tree
• Weights are chosen according to how much data they have

relative to the bottom level:
• At L = 6: sub-posteriors are given weight wc = 1 for

c = 1, . . . , 32, i.e. Tc = 0.5
• At L = 5: sub-posteriors are given weight wc = 2 for

c = 1, . . . , 16 (have twice more data than the start), i.e.
Tc = 0.5

2 = 0.25
• and so on up the levels...

26/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

How to apply Hierarchical Time-adapting SMC Fusion

• Choose a time T = 0.5

• Use balanced hierarchical tree where we combine m = 2
sub-posteriors at each level, i.e. have L = 6 levels in the tree
• Weights are chosen according to how much data they have

relative to the bottom level:
• At L = 6: sub-posteriors are given weight wc = 1 for

c = 1, . . . , 32, i.e. Tc = 0.5
• At L = 5: sub-posteriors are given weight wc = 2 for

c = 1, . . . , 16 (have twice more data than the start), i.e.
Tc = 0.5

2 = 0.25
• and so on up the levels...

26/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

How to apply Hierarchical Time-adapting SMC Fusion

• Choose a time T = 0.5

• Use balanced hierarchical tree where we combine m = 2
sub-posteriors at each level, i.e. have L = 6 levels in the tree
• Weights are chosen according to how much data they have

relative to the bottom level:
• At L = 6: sub-posteriors are given weight wc = 1 for

c = 1, . . . , 32, i.e. Tc = 0.5
• At L = 5: sub-posteriors are given weight wc = 2 for

c = 1, . . . , 16 (have twice more data than the start), i.e.
Tc = 0.5

2 = 0.25
• and so on up the levels...

27/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

• To compare methods we calculate the integrated absolute
distance

IAD =
1

2d

d∑
j=1

∫ ∣∣∣f̂ (xj)− f (xj)
∣∣∣dxj

where f̂ (xj) is the marginal density for xj based on the
method applied and f (xj) is the benchmark estimate
(obtained using NUTS with Stan)

• Fix computational cost by restricting run-time allowed for
algorithm

27/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

• To compare methods we calculate the integrated absolute
distance

IAD =
1

2d

d∑
j=1

∫ ∣∣∣f̂ (xj)− f (xj)
∣∣∣dxj

where f̂ (xj) is the marginal density for xj based on the
method applied and f (xj) is the benchmark estimate
(obtained using NUTS with Stan)

• Fix computational cost by restricting run-time allowed for
algorithm

28/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

29/31

Hierarchical Monte Carlo Fusion

Logistic Regression Example

Logistic Regression Example - Taiwan default payments

30/31

Hierarchical Monte Carlo Fusion

Ongoing directions

Ongoing directions

• Combining conflicting sub-posteriors

• Confidential fusion (Con-fusion): where sharing
information/data between cores is not permitted

• Bayesian Fusion: tailored to big data Bayesian problems

• Different proposals: e.g. Ornstein-Uhlenbeck bridges, more
general Langevin diffusion with pre-conditioning matrix for
each sub-posterior

• Theory for D&C-SMC with Monte Carlo Fusion

30/31

Hierarchical Monte Carlo Fusion

Ongoing directions

Ongoing directions

• Combining conflicting sub-posteriors

• Confidential fusion (Con-fusion): where sharing
information/data between cores is not permitted

• Bayesian Fusion: tailored to big data Bayesian problems

• Different proposals: e.g. Ornstein-Uhlenbeck bridges, more
general Langevin diffusion with pre-conditioning matrix for
each sub-posterior

• Theory for D&C-SMC with Monte Carlo Fusion

30/31

Hierarchical Monte Carlo Fusion

Ongoing directions

Ongoing directions

• Combining conflicting sub-posteriors

• Confidential fusion (Con-fusion): where sharing
information/data between cores is not permitted

• Bayesian Fusion: tailored to big data Bayesian problems

• Different proposals: e.g. Ornstein-Uhlenbeck bridges, more
general Langevin diffusion with pre-conditioning matrix for
each sub-posterior

• Theory for D&C-SMC with Monte Carlo Fusion

30/31

Hierarchical Monte Carlo Fusion

Ongoing directions

Ongoing directions

• Combining conflicting sub-posteriors

• Confidential fusion (Con-fusion): where sharing
information/data between cores is not permitted

• Bayesian Fusion: tailored to big data Bayesian problems

• Different proposals: e.g. Ornstein-Uhlenbeck bridges, more
general Langevin diffusion with pre-conditioning matrix for
each sub-posterior

• Theory for D&C-SMC with Monte Carlo Fusion

30/31

Hierarchical Monte Carlo Fusion

Ongoing directions

Ongoing directions

• Combining conflicting sub-posteriors

• Confidential fusion (Con-fusion): where sharing
information/data between cores is not permitted

• Bayesian Fusion: tailored to big data Bayesian problems

• Different proposals: e.g. Ornstein-Uhlenbeck bridges, more
general Langevin diffusion with pre-conditioning matrix for
each sub-posterior

• Theory for D&C-SMC with Monte Carlo Fusion

31/31

Hierarchical Monte Carlo Fusion

Ongoing directions

References

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006). Exact and computationally efficient
likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(3):333–382.

Beskos, A., Roberts, G. O., et al. (2005). Exact simulation of diffusions. The Annals of Applied Probability,
15(4):2422–2444.

Dai, H., Pollock, M., and Roberts, G. (2019). Monte Carlo Fusion. Journal of Applied Probability, 56(1):174–191.

Lindsten, F., Johansen, A. M., Naesseth, C. A., Kirkpatrick, B., Schön, T. B., Aston, J., and Bouchard-Côté, A.
(2017). Divide-and-conquer with Sequential Monte Carlo. Journal of Computational and Graphical Statistics,
26(2):445–458.

Neiswanger, W., Wang, C., and Xing, E. (2013). Asymptotically exact, embarrassingly parallel MCMC. arXiv
preprint arXiv:1311.4780.

Pollock, M., Johansen, A. M., Roberts, G. O., et al. (2016). On the exact and ε-strong simulation of (jump)
diffusions. Bernoulli, 22(2):794–856.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch, R. E. (2016). Bayes
and big data: The consensus Monte Carlo algorithm. International Journal of Management Science and
Engineering Management, 11(2):78–88.

Wang, X. and Dunson, D. B. (2013). Parallelizing MCMC via Weierstrass Sampler. arXiv e-prints, page
arXiv:1312.4605.

	Monte Carlo Fusion
	Fork-and-join
	Constructing a rejection sampler
	Double Langevin Approach

	Hierarchical Fusion
	Time-adapting Monte Carlo Fusion
	Divide-and-Conquer SMC with Fusion

	Logistic Regression Example
	Ongoing directions
	References

