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The fusion problem

Fusion Problem

Target:

where each sub-posterior, f;(X), is a density representing one
of the C distributed inferences we wish to unify

Assume we can sample x(¢) . (x)

Applications:
Big Data (by construction)
Tempering (by construction)
Expert elicitation: combining views of multiple experts
Privacy setting
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Fusion for Big Data

Consider we have data X with a large number of observations
n
The (X ] ) becomes

to calculate
This makes MCMC prohibitively

for big data

where 6 denotes the c-th subset for c = 1;:
()=

""" ;C and
o1 ( )C is the prior
Advantage: inference on each smaller dataset can be
conducted independently and in
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The fusion problem
Fusion for Big Data

Consider we have data X with a large number of observations
n

The likelihood “(Xx j ) becomes expensive to calculate
This makes MCMC prohibitively slow for big data

Potential solution:

(ix)7 *(xj) ()= “xij) ()
i=1 c=1
where )b denotes the c-th subset for c = 1;:::;C and
C 1. .
()= "¢c—; ()c isthe prior
Advantage: inference on each smaller dataset can be
conducted independently and in parallel
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Fusion for Tempering

Consider the power-tempered target distribution
(x) =1 ()] for 2(0;1]
from

MCMC can become computationally expensive to sample

and can get stuck in modes

where L 2 N
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The fusion problem

Fusion for Tempering

Consider the power-tempered target distribution

(x)=1[ (x)] for 2(0;1]
MCMC can become computationally expensive to sample
from multi-modal densities and can get stuck in modes
Potential solution:

1
1 Y

where £ 2 N



Algorithms for unifying statistical inference

Fusion in a privacy setting

Suppose have C parties that wish to combine their inferences
but either:

underlying model f¢(X) cannot be shared, or
underlying data X; cannot be shared

e.g. healthcare settings

If we have a method that can combine inferences or samples,

would need some mechanism that ensures the privacy of the
model or data
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The fusion problem

Fusion in a privacy setting

Suppose have C parties that wish to combine their inferences
but either:

underlying model fc(x) cannot be shared, or
underlying data X; cannot be shared

e.g. healthcare settings

If we have a method that can combine inferences or samples,
would need some mechanism that ensures the privacy of the
model or data
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Fork-and-join fusion

The fork-and-join approach:

«0» «Fr «Z» «
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Several fork-and-join methods have been developed. For
instance
Gaussian approximations to sub-posteriors [Neiswanger et al.,
2013]
Kernel density averaging [Neiswanger et al., 2013]
Consensus Monte Carlo [Scott et al., 2016]



Algorithms for unifying statistical inference
Popular algorithms for fusion

Kernel density averaging (KDEMC)

Apply a kernel density estimation to each sub-posterig(x)
[Neiswanger et al., 2013]. Then approximate full posterior by

'
A= fe(x)

c=1



Algorithms for unifying statistical inference
Popular algorithms for fusion

Kernel density averaging (KDEMC)

Apply a kernel density estimation to each sub-posterig(x)
[Neiswanger et al., 2013]. Then approximate full posterior by

2
rx)= o fe(x)

c=1

If Gaussian kernels are used(x) is a product of Gaussian
mixtures with O(NC) components N samplesC
sub-posteriors)



Algorithms for unifying statistical inference
Popular algorithms for fusion

Kernel density averaging (KDEMC)

Apply a kernel density estimation to each sub-posterig(x)
[Neiswanger et al., 2013]. Then approximate full posterior by

2
rx)= o fe(x)

c=1

If Gaussian kernels are used(x) is a product of Gaussian
mixtures with O(NC) components N samplesC
sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian
mixture using MCMC



Algorithms for unifying statistical inference
Popular algorithms for fusion

Kernel density averaging (KDEMC)

Apply a kernel density estimation to each sub-posterig(x)
[Neiswanger et al., 2013]. Then approximate full posterior by

2
rx)= o fe(x)

c=1

If Gaussian kernels are used(x) is a product of Gaussian
mixtures withO(NC) components N samplesC
sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian
mixture using MCMC

Can be computationally expensive and ine cient



Algorithms for unifying statistical inference
Popular algorithms for fusion

Kernel density averaging (KDEMC)

Apply a kernel density estimation to each sub-posterig(x)
[Neiswanger et al., 2013]. Then approximate full posterior by

2
rx)= o fe(x)

c=1

If Gaussian kernels are used(x) is a product of Gaussian
mixtures with O(NC) components N samplesC
sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian
mixture using MCMC

Can be computationally expensive and ine cient
Does not scale well with dimension
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Consensus Monte Carlo

Approximate the full posterior as a weighted average of the
sub-posterior samples [Scott et al., 2016]

Suppose have MCMC sampla$”;:::;x'® from f¢(x) for
c=1;:::;C. Then approximate fuII posterlor
| |
S S
Xi = W WeX;
c=1 c=1

whereW, 2 RY is a weight matrix for sub-posterice
(typically take W = "¢)

Method is exact if sub-posteriors are Gaussian (motivated by
Bernstein-von Mises Theorem)

Very scalable



Algorithms for unifying statistical inference
Popular algorithms for fusion

Current Fork-and-Join Methods

Several fork-and-join methods have been developed. For
instance
Gaussian approximations to sub-posteriors [Neiswanger et al.,
2013]
Kernel density averaging [Neiswanger et al., 2013]
Consensus Monte Carlo [Scott et al., 2016]



Algorithms for unifying statistical inference
Popular algorithms for fusion

Current Fork-and-Join Methods

Several fork-and-join methods have been developed. For
instance

Gaussian approximations to sub-posteriors [Neiswanger et al.,
2013]
Kernel density averaging [Neiswanger et al., 2013]
Consensus Monte Carlo [Scott et al., 2016]
A primary weakness of these methods is that the
recombination is inexact in general and involve approximations



Algorithms for unifying statistical inference
Popular algorithms for fusion

Current Fork-and-Join Methods

Several fork-and-join methods have been developed. For
instance

Gaussian approximations to sub-posteriors [Neiswanger et al.,
2013]
Kernel density averaging [Neiswanger et al., 2013]
Consensus Monte Carlo [Scott et al., 2016]
A primary weakness of these methods is that the
recombination is inexact in general and involve approximations

However, Monte Carlo Fusion [Dai et al., 2019] is exact
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Constructing a rejection sampler - An Extended Target

Proposition

Suppose thatpe(y j x(¢)) is the transition density of a stochastic
process with stationary distributiofi?(x). The

(C + 1) d-dimensional (fusion) density proportional to the
integrable function

admits the marginal density fory.
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Constructing a rejection sampler - An Extended Target

Proposition

Suppose thatpe(y j x(¢)) is the transition density of a stochastic
process with stationary distributiofi?(x). The

(C + 1) d-dimensional (fusion) density proportional to the
integrable function

admits the marginal density fory.

Main idea: If we can sample from, then we can can obtain a
draw from the fusion densityy( )



Algorithms for unifying statistical inference

Rejection Sampling (Double Langevin Approach)

There are many possible choices fa(y j x)

DA 13127



Algorithms for unifying statistical inference
The Monte Carlo Fusion algorithm
|—Construcling a rejection sampler

Rejection Sampling (Double Langevin Approach)

There are many possible choices fa(y j x)

Let pc(y j X) = pr.c(Yy j X), the transition density of the
d- dimensional (double) Langevin (DL) di usion processes

(C) forc=1;:::; ; C, from x to y for a pre-de ned time
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Rejection Sampling (Double Langevin Approach)

There are many possible choices fa(y j x)

Let pc(y j X) = pr.c(Yy j X), the transition density of the
d- dimensional (double) Langevin (DL) di usion processes

(C) forc=1;:::; ; C, from x to y for a pre-de ned time
T > 0 given by

dX{? = or logfe x{© dt+ Paw/®

Wt(c) is d-dimensional Brownian motion
¢ Is the pre-conditioning matrix associated with sub-posterior
fe
r is the gradient operator ovex
Has stationary distributiorf 2(x)
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Rejection Sampling (Double Langevin Approach)

Extended Target Density:

W
g X(l:c);y / fcz X(C) Pc ij(c)
c=1

fe(y)

DA 14127



Algorithms for unifying statistical inference
The Monte Carlo Fusion algorithm
|—Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

Extended Target Density:

\€
(1:C). 2 (c) iy (c)
X vy ! f& x X —
g y o C pC yJ fc(y)
Consider the proposal densityfor the extended targey:

h x@O). /\Chf @ 1 |1
Xy c X exp Sy ¥ Ny X

c=1
1
Y = P c 1 P Cc 1y (c)
) CT:} c c=1 ¢
1.. 1 C 1
T c=l ¢

T is an arbitrary positive constant
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Rejection Sampling (Double Langevin Approach)

Simulation fromh is easy:
¥ h
h(X(l:C);y) /

|
fo x(©  exp %(y oy %
c=1
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The Monte Carlo Fusion algorithm
|—Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

Simulation fromh is easy:

| ¥ h ! 1
h(x®)y) / fo x©  exp S D)y %)
c=1

1. Simulatex(©)  f.(x) independently
2. Simulatey N (x;)
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Rejection Sampling - acceptance probability

Acceptance probability:
g(x(l) ..... x(C);y)
h(x(]_) ..... X(C) : y) Q
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The Monte Carlo Fusion algorithm
|—Constructing a rejection sampler

Rejection Sampling - acceptance probability

Acceptance probability:

h(x@::::;x©O):y) Q
where
S (1:C)y = : P Cc  ( x©) (% X(C))O
% (x:C)) = exp ©. >
§ Q h n R
(X(l C)- y) C EW exp C;I' . XI(C)

whereW _ denotes the law of a Brownian bridge
x{;t 2 [0;t]g with x{? = x(© andx{¥ = y and
covariance matrix ¢

Cc

dt

Oi
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|—Constructing a rejection sampler

Q Acceptance Probability

where
|

! x logfe(x)
c(X) = 5 T logfe(x)! cr logfe(x) + B C;kkw

¢ are constants such that for alt, (x) c for

Events of probabilityQ can be simulated using Poisson
thinning and methodology called Path-space Rejection
Sampling (PSRS) or the Exact Algorithm (Beskos et al.
[2005], Beskos et al. [2006], Pollock et al. [2016])



Algorithms for unifying statistical inference
The Monte Carlo Fusion algorithm
LConstrucling a rejection sampler

Interpretation

Correct a simple weighted averageof sub-posterior values to
a Monte Carlo draw from (x) with acceptance probability

Q
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Double Langevin Approach - Summary

Proposal:

i
h x3C.y fo x(©
c=1

exp 2y 0 Ny 9

Accepty as a draw from fusion density with probability:

Monte Carlo Fusion Algorithm:
Simulate

and
Accepty with probability

«0O0)>» «F>r» « >

« =
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Double Langevin Approach - Summary

Proposal:
¥ h i 1

h X(l;C);y / fe x(¢) exp é(y X')l 1(y X)
c=1

Accepty as a draw from fusion density with probability:

Monte Carlo Fusion Algorithm:
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The Monte Carlo Fusion algorithm
|—Constructing a rejection sampler

Double Langevin Approach - Summary

Proposal:
¥ h i 1

h X(l;C);y / fe x(¢) exp é(y X')l 1(y X)
c=1

Accepty as a draw from fusion density with probability:

Monte Carlo Fusion Algorithm:
1. Simulatex(®  f.(x)andy N (x;)
2. Accepty with probability Q
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Density with light tails

X4
Target: (xX)/ e =

N =20;000

DA 20027
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The Monte Carlo Fusion algorithm
|—Simple examples

Mixture Gaussian

Target: (x)/ O:BN( 5;1)+0:2N (6;2) + 0:3N (12; 1:5)
Sub-posteriorsfe(x) /| (X)¥* forc=1;:::;4
N =20;000
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Recall: Fork-and-join

The fork-and-join approach:

«0O0)>» «F>r» « >

« =
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Hierarchical Monte Carlo Fusion

Solution: adopt a divide-and-conquer approach:

DA 23127
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Example

x4
Target: (x)/ e =

«4O0>» «Fr «=)r» « >
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Possible extensions to Monte Carlo Fusion
LDivide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC with Fusion

Can apply Sequential Monte Carlo in the hierarchical fusion
framework

Rejection sampling can be wasteful: large number of proposed
samples are rejected

Motives the use of Sequential Importance Sampling /
Resampling ideas
Replace the rejection sampling steps with importance sampling
steps
Introduce resampling at the nodes if the ESS falls below some
threshold
Fits into the Divide-and-Conquer SMC (D&C-SMC)
framework by Lindsten et al. [2017]
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Bayesian Fusion

Ongoing work by Dai, H., Pollock, M. and Roberts, G.O.
Tailored to big data Bayesian problems

Time Time
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L Bayesian Fusion
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