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The fusion problem

Fusion Problem

� Target:

�(x) /
CY

c=1

fc(x)

where each sub-posterior, fc(x), is a density representing one
of the C distributed inferences we wish to unify

� Assume we can sample x (c) � fc(x)
� Applications:

� Big Data (by construction)
� Tempering (by construction)
� Expert elicitation: combining views of multiple experts
� Privacy setting
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The fusion problem

Fusion for Big Data

� Consider we have data x with a large number of observations
n
� The likelihood ‘(x j �) becomes expensive to calculate

� This makes MCMC prohibitively slow for big data

� Potential solution:

�(� j x) /
nY

i=1

‘(x j �)�(�) =
CY

c=1

‘(xc j �)�(�)
1
C

where xc denotes the c-th subset for c = 1; : : : ;C and

�(�) =
QC

c=1 �(�)
1
C is the prior

� Advantage: inference on each smaller dataset can be
conducted independently and in parallel
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The fusion problem

Fusion for Tempering

� Consider the power-tempered target distribution
��(x) = [�(x)]� for � 2 (0; 1]

� MCMC can become computationally expensive to sample
from multi-modal densities and can get stuck in modes

� Potential solution:

�(x) / �(x)
1
�

�� /

1
�Y

c=1

��(x)

where 1
� 2 N
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The fusion problem

Fusion in a privacy setting

� Suppose have C parties that wish to combine their inferences
but either:
� underlying model fc(x) cannot be shared, or
� underlying data xc cannot be shared

� e.g. healthcare settings

� If we have a method that can combine inferences or samples,
would need some mechanism that ensures the privacy of the
model or data
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The fusion problem

Fork-and-join fusion

The fork-and-join approach:
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Popular algorithms for fusion

Current Fork-and-Join Methods

� Several fork-and-join methods have been developed. For
instance

� Gaussian approximations to sub-posteriors [Neiswanger et al.,
2013]

� Kernel density averaging [Neiswanger et al., 2013]
� Consensus Monte Carlo [Scott et al., 2016]
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Popular algorithms for fusion

Kernel density averaging (KDEMC)

� Apply a kernel density estimation to each sub-posterior,f̂c(x)
[Neiswanger et al., 2013]. Then approximate full posterior by

�̂ (x) =
CY

c=1

f̂c(x)

� If Gaussian kernels are used, ^� (x) is a product of Gaussian
mixtures withO(NC) components (N samples,C
sub-posteriors)

� Neiswanger et al. [2013] suggest sampling from the Gaussian
mixture using MCMC

� Can be computationally expensive and ine�cient
� Does not scale well with dimension
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Popular algorithms for fusion

Consensus Monte Carlo

� Approximate the full posterior as a weighted average of the
sub-posterior samples [Scott et al., 2016]

� Suppose have MCMC samplesx (c)
1 ; : : : ; x (c)

N from fc(x) for
c = 1 ; : : : ; C. Then approximate full posterior

xi =

 
CX

c=1

Wc

! � 1  
CX

c=1

Wcx (c)
i

!

whereWc 2 Rd is a weight matrix for sub-posteriorc
(typically take Wc = �̂ c)

� Method is exact if sub-posteriors are Gaussian (motivated by
Bernstein-von Mises Theorem)

� Very scalable
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Popular algorithms for fusion

Current Fork-and-Join Methods

� Several fork-and-join methods have been developed. For
instance

� Gaussian approximations to sub-posteriors [Neiswanger et al.,
2013]

� Kernel density averaging [Neiswanger et al., 2013]
� Consensus Monte Carlo [Scott et al., 2016]

� A primary weakness of these methods is that the
recombination is inexact in general and involve approximations

� However, Monte Carlo Fusion [Dai et al., 2019] is exact
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Constructing a rejection sampler - An Extended Target

Proposition
Suppose thatpc(y j x (c) ) is the transition density of a stochastic
process with stationary distributionf 2

c (x). The
(C + 1) d-dimensional (fusion) density proportional to the
integrable function

g
�

x (1) ; : : : ; x (C) ; y
�

/
CY

c=1

�
f 2
c

�
x (c)

�
pc

�
y j x (c)

�
�

1
fc(y )

�

admits the marginal density� for y .

� Main idea: If we can sample fromg, then we can can obtain a
draw from the fusion density (y � � )
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

� There are many possible choices forpc(y j x)
� Let pc(y j x) := pT ;c(y j x), the transition density of the

d-dimensional (double) Langevin (DL) di�usion processes
X (c)

t for c = 1 ; : : : ; C, from x to y for a pre-de�ned time
T > 0 given by

dX (c)
t = � cr logfc

�
x (c)

t

�
dt + � 1=2

c dW (c)
t

� W (c)
t is d-dimensional Brownian motion

� � c is the pre-conditioning matrix associated with sub-posterior
fc

� r is the gradient operator overx
� Has stationary distributionf 2

c (x)
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

� Extended Target Density:

g
�

x (1:C) ; y
�

/
CY

c=1

�
f 2
c

�
x (c)

�
� pc

�
y jx (c)

�
�

1
fc(y )

�

� Consider the proposal densityh for the extended targetg:

h
�

x (1:C) ; y
�

/
CY

c=1

h
fc

�
x (c)

�i
�exp

�
�

1
2

(y � ~x)| � � 1(y � ~x)
�

� ~x :=
� P C

c=1 � � 1
c

� � 1 � P C
c=1 � � 1

c x (c)
�

� � � 1 := 1
T

P C
c=1 � � 1

c
� T is an arbitrary positive constant
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

� Simulation fromh is easy:

h(x (1:C) ; y ) /
CY

c=1

h
fc

�
x (c)

�i
� exp

�
�

1
2

(y � ~x)| � � 1(y � ~x)
�

1. Simulatex (c) � fc(x) independently

2. Simulatey � N ( ~x; �)
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Rejection Sampling - acceptance probability

� Acceptance probability:

g(x (1) ; : : : ; x (C) ; y )
h(x (1) ; : : : ; x (C) ; y )

/ � � Q

where
8
>>><

>>>:

� (x (1:C) ) = exp
n

�
P C

c=1
(~x � x (c) ) | � � 1

c (~x � x (c) )
2T

o

Q(x (1:C) ; y ) :=
Q C

c=1 EW � c

h
exp

n
�

RT
0

�
� c

�
x (c)

t

�
� � c

�
dt

oi

whereW � c denotes the law of a Brownian bridge
f x (c)

t ; t 2 [0; t ]g with x (c)
0 := x (c) and x (c)

T := y and
covariance matrix �c
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Q Acceptance Probability

Q :=
CY

c=1

EW� c

�
exp

�
�

Z T

0

�
� c

�
x (c)

t

�
� � c

�
dt

��

where

� c(x) =
1
2

 

r logfc(x)| � cr logfc(x) +
dX

k=1

� c;kk
@r logfc(x)

@xk

!

� � c are constants such that for allx, � c(x) � � c for
c 2 f 1; : : : ; Cg

� Events of probabilityQ can be simulated using Poisson
thinning and methodology called Path-space Rejection
Sampling (PSRS) or the Exact Algorithm (Beskos et al.
[2005], Beskos et al. [2006], Pollock et al. [2016])
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Interpretation

� Correct a simple weighted average~x of sub-posterior values to
a Monte Carlo draw from� (x) with acceptance probability
� � Q
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The Monte Carlo Fusion algorithm

Constructing a rejection sampler

Double Langevin Approach - Summary

� Proposal:

h
�

x (1:C) ; y
�

/
CY

c=1

h
fc

�
x (c)

�i
�exp

�
�

1
2

(y � ~x)| � � 1(y � ~x)
�

� Accept y as a draw from fusion density� with probability:

g(x (1) ; : : : ; x (C) ; y )
h(x (1) ; : : : ; x (C) ; y )

/ � � Q

� Monte Carlo Fusion Algorithm:
1. Simulatex (c) � fc(x) and y � N ( ~x; �)
2. Accepty with probability � � Q
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The Monte Carlo Fusion algorithm

Simple examples

Density with light tails

� Target: � (x) / e� x4

2

� Sub-posteriors:fc(x) / e� x4

8 for c = 1 ; : : : ; 4
� N = 20; 000
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The Monte Carlo Fusion algorithm

Simple examples

Mixture Gaussian

� Target: � (x) / 0:5N (� 5; 1) + 0 :2N (6; 2) + 0 :3N (12; 1:5)
� Sub-posteriors:fc(x) / � (x)1=4 for c = 1 ; : : : ; 4
� N = 20; 000
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Possible extensions to Monte Carlo Fusion

Hierarchical Monte Carlo Fusion

Recall: Fork-and-join

The fork-and-join approach:
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Hierarchical Monte Carlo Fusion

Hierarchical Monte Carlo Fusion

Solution: adopt a divide-and-conquer approach:
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Possible extensions to Monte Carlo Fusion

Hierarchical Monte Carlo Fusion

Example

� Target: � (x) / e� x4

2

� Sub-posteriors:fc(x) = e� x4

2C for c = 1 ; : : : ; C
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Possible extensions to Monte Carlo Fusion

Divide-and-Conquer SMC with Fusion

Divide-and-Conquer SMC with Fusion

� Can apply Sequential Monte Carlo in the hierarchical fusion
framework

� Rejection sampling can be wasteful: large number of proposed
samples are rejected

� Motives the use of Sequential Importance Sampling /
Resampling ideas

� Replace the rejection sampling steps with importance sampling
steps

� Introduce resampling at the nodes if the ESS falls below some
threshold

� Fits into the Divide-and-Conquer SMC (D&C-SMC)
framework by Lindsten et al. [2017]
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Possible extensions to Monte Carlo Fusion

Bayesian Fusion

Bayesian Fusion

� Ongoing work by Dai, H., Pollock, M. and Roberts, G.O.

� Tailored to big data Bayesian problems
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Bayesian Fusion
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