Algorithms for unifying statistical inference Ryan Chan

9 Feb 2021

The Alan Turing Institute

Outline

The fusion problem

Popular algorithms for fusion

The Monte Carlo Fusion algorithm Constructing a rejection sampler Simple examples

Possible extensions to Monte Carlo Fusion Hierarchical Monte Carlo Fusion Divide-and-Conquer SMC with Fusion Bayesian Fusion

Fusion Problem

Target:

$$(x) \nearrow c$$
 $c=1$

where each *sub-posterior*, $f_c(x)$, is a density representing one of the C distributed inferences we wish to unify

Assume we can sample $x^{(c)} = f_c(x)$ Applications:

Tempering (by construction)

Expert elicitation: combining views of multiple experts

Privacy setting

Fusion Problem

Target:

$$(x) \neq c \\ c=1$$

where each *sub-posterior*, $f_C(x)$, is a density representing one of the C distributed inferences we wish to unify

Assume we can sample $\chi^{(c)} = f_c(\chi)$

Applications

Big Data (by construction)

Tempering (by construction)

Expert elicitation: combining views of multiple experts

Privacy setting

Fusion Problem

Target:

$$(x) \nearrow \int_{c=1}^{\infty} f_c(x)$$

where each *sub-posterior*, $f_c(x)$, is a density representing one of the C distributed inferences we wish to unify

Assume we can sample $x^{(c)}$ $f_c(x)$

Applications:

Big Data (by construction)

Tempering (by construction)

Expert elicitation: combining views of multiple experts

Privacy setting

Consider we have data \boldsymbol{x} with a large number of observations \boldsymbol{n}

The likelihood `(xj) becomes expensive to calculate This makes MCMC prohibitively slow for big data

$$(jx) \times (xj) (j) = (xcj) (j)^{\frac{1}{6}}$$

where ζ_0 denotes the c-th subset for $c=1;\ldots;C$ and () = $\frac{c}{c=1}$ () $\frac{1}{c}$ is the prior

Consider we have data X with a large number of observations n

The likelihood (x j) becomes expensive to calculate

This makes MCMC prohibitively slow for big data

Potential solution:

$$(jx) \nearrow_{i=1}^{\gamma n} (xj) (j) = \bigvee_{c=1}^{\gamma c} (x_c j) (j)^{\frac{1}{c}}$$

where χ_{0} denotes the c-th subset for $c=1;\ldots;C$ and () = $\frac{c}{c=1}$ () $\frac{1}{c}$ is the prior

Consider we have data X with a large number of observations n

The likelihood `(x j) becomes expensive to calculate This makes MCMC prohibitively slow for big data

Potential solution:

$$(jx) \neq \bigvee_{i=1}^{n} (xj) (j) = \bigvee_{c=1}^{c} (xcj) (j)^{\frac{1}{c}}$$

where χ_{0} denotes the c-th subset for $c=1;\ldots;C$ and () = $\frac{c}{c=1}$ () $\frac{1}{c}$ is the prior

Consider we have data X with a large number of observations n

The likelihood `(x j) becomes expensive to calculate This makes MCMC prohibitively slow for big data

Potential solution:

$$(jx) \nearrow_{i=1}^{n} (xj) (j) = \bigvee_{c=1}^{c} (xcj) (j)^{\frac{1}{c}}$$

where $\underset{c=1}{\chi_0}$ denotes the c-th subset for $c=1;\ldots;C$ and () = $\underset{c=1}{\overset{C}{\sim}}$ () $^{\frac{1}{C}}$ is the prior

Consider we have data X with a large number of observations n

The likelihood (x j) becomes expensive to calculate This makes MCMC prohibitively slow for big data

Potential solution:

$$(jx) \nearrow_{i=1}^{n} (xj) (j) = \bigvee_{c=1}^{c} (xcj) (j)^{\frac{1}{c}}$$

where X_0 denotes the C-th subset for $C=1;\ldots;C$ and () = C_0 () is the prior

Fusion for Tempering

Consider the power-tempered target distribution

$$(x) = [(x)]$$
 for $2(0,1]$

MCMC can become computationally expensive to sample from multi-modal densities and can get stuck in modes

Potential solution:

$$(x) \times (x)^{\frac{1}{2}} \times \bigvee_{c=1}^{\frac{1}{2}} (x)$$

where $\frac{1}{2}$ N

Fusion for Tempering

Consider the power-tempered target distribution

$$(x) = [(x)]$$
 for $2(0;1]$

MCMC can become computationally expensive to sample from multi-modal densities and can get stuck in modes

Potential solution:

$$(x) \nearrow (x)^{\frac{1}{2}} \nearrow \overset{\overset{1}{\checkmark}}{\bigvee}$$
 (x)

where $\frac{1}{2}$ N

Fusion for Tempering

Consider the power-tempered target distribution

$$(x) = [(x)]$$
 for $2(0,1]$

MCMC can become computationally expensive to sample from multi-modal densities and can get stuck in modes Potential solution:

$$(x) \neq (x)^{\frac{1}{2}} \neq (x)$$

$$c=1$$

where $\frac{1}{2}$ 2 N

Suppose have C parties that wish to combine their inferences but either:

underlying model $f_c(x)$ cannot be shared, or underlying data x_c cannot be shared

e.g. healthcare settings

Suppose have C parties that wish to combine their inferences but either:

underlying model $f_c(x)$ cannot be shared, or

underlying data X_C cannot be shared

e.g. healthcare settings

Suppose have C parties that wish to combine their inferences but either:

underlying model $f_c(X)$ cannot be shared, or underlying data X_c cannot be shared

e.g. healthcare settings

Suppose have C parties that wish to combine their inferences but either:

underlying model $f_c(x)$ cannot be shared, or underlying data x_c cannot be shared

e.g. healthcare settings

Suppose have C parties that wish to combine their inferences but either:

underlying model $f_c(x)$ cannot be shared, or underlying data x_c cannot be shared

e.g. healthcare settings

Fork-and-join fusion

The fork-and-join approach:

Several fork-and-join methods have been developed. For instance

Gaussian approximations to sub-posteriors [Neiswanger et al., 2013]

Kernel density averaging [Neiswanger et al., 2013] Consensus Monte Carlo (Scott et al., 2016)

Several fork-and-join methods have been developed. For instance

Gaussian approximations to sub-posteriors [Neiswanger et al., 2013]

Kernel density averaging [Neiswanger et al., 2013] Consensus Monte Carlo [Scott et al., 2016]

Several fork-and-join methods have been developed. For instance

Gaussian approximations to sub-posteriors [Neiswanger et al., 2013]

Kernel density averaging [Neiswanger et al., 2013]

Consensus Monte Carlo [Scott et al., 2016]

Several fork-and-join methods have been developed. For instance

Gaussian approximations to sub-posteriors [Neiswanger et al., 2013]

Kernel density averaging [Neiswanger et al., 2013]

Consensus Monte Carlo [Scott et al., 2016]

Apply a kernel density estimation to each sub-posterion (x) [Neiswanger et al., 2013]. Then approximate full posterior by

$$^{\wedge}(x) = \int_{c=1}^{c} f_{c}(x)$$

If Gaussian kernels are used(x) is a product of Gaussian mixtures with O(NC) components (N samples,C sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian mixture using MCMC

Can be computationally expensive and ine cient

Does not scale well with dimension

Apply a kernel density estimation to each sub-posterion (x) [Neiswanger et al., 2013]. Then approximate full posterior by

$$^{\wedge}(x) = \int_{c=1}^{c} f_{c}(x)$$

If Gaussian kernels are used(x') is a product of Gaussian mixtures with O(NC) components (N samples,C sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian mixture using MCMC

Can be computationally expensive and ine cient Does not scale well with dimension

Apply a kernel density estimation to each sub-posteri $\hat{Q}(x)$ [Neiswanger et al., 2013]. Then approximate full posterior by

$$^{\wedge}(x) = \int_{c=1}^{c} f_{c}(x)$$

If Gaussian kernels are used(x/) is a product of Gaussian mixtures with O(NC) components (N samples,C sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian mixture using MCMC

Can be computationally expensive and ine cient Does not scale well with dimension

Apply a kernel density estimation to each sub-posterion (x) [Neiswanger et al., 2013]. Then approximate full posterior by

$$^{\wedge}(x) = \int_{c=1}^{c} f_{c}(x)$$

If Gaussian kernels are used,x) is a product of Gaussian mixtures with O(NC) components (N samples,C sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian mixture using MCMC

Can be computationally expensive and ine cient

Does not scale well with dimension

Apply a kernel density estimation to each sub-posterion (x) [Neiswanger et al., 2013]. Then approximate full posterior by

$$^{\wedge}(x) = \int_{c=1}^{c} f_{c}(x)$$

If Gaussian kernels are used(x/) is a product of Gaussian mixtures with O(NC) components (N samples,C sub-posteriors)

Neiswanger et al. [2013] suggest sampling from the Gaussian mixture using MCMC

Can be computationally expensive and ine cient

Does not scale well with dimension

Approximate the full posterior as a weighted average of the sub-posterior samples [Scott et al., 2016]

Suppose have MCMC samples $f_c^{(c)}$;:::; $f_c^{(c)}$ from $f_c(x)$ for $f_c(x)$ for $f_c(x)$ for $f_c(x)$ for $f_c(x)$ for $f_c(x)$ from $f_c(x)$ for $f_c(x)$ for $f_c(x)$ for $f_c(x)$ from $f_c(x)$ for $f_c(x)$ for $f_c(x)$ from $f_c(x)$ for $f_c(x)$ from $f_c(x)$ for $f_c(x)$ from $f_c(x)$ for $f_c(x)$ from $f_c(x)$ fr

where W_c 2 R^d is a weight matrix for sub-posterior (typically take $W_c = {}^{\land}_c$)

Method is exact if sub-posteriors are Gaussian (motivated by Bernstein-von Mises Theorem)

Approximate the full posterior as a weighted average of the sub-posterior samples [Scott et al., 2016]

Suppose have MCMC samples (c); ...; (c) from (c) for (c) for (c) from approximate full posterior

where W_c 2 R^d is a weight matrix for sub-posterior (typically take $W_c = {^{\land}_c}$)

Method is exact if sub-posteriors are Gaussian (motivated by Bernstein-von Mises Theorem)

Approximate the full posterior as a weighted average of the sub-posterior samples [Scott et al., 2016]

Suppose have MCMC samples;:::; $x_N^{(c)}$ from $f_c(x)$ for c = 1; :::; C. Then approximate full posterior

where W_c 2 R^d is a weight matrix for sub-posterior (typically take $W_c = {^{\land}_c}$)

Method is exact if sub-posteriors are Gaussian (motivated by Bernstein-von Mises Theorem)

Approximate the full posterior as a weighted average of the sub-posterior samples [Scott et al., 2016]

Suppose have MCMC samples;:::; $x_N^{(c)}$ from $f_c(x)$ for c = 1; :::; C. Then approximate full posterior

where W_c 2 R^d is a weight matrix for sub-posterior (typically take $W_c = {^{\land}_c}$)

Method is exact if sub-posteriors are Gaussian (motivated by Bernstein-von Mises Theorem)

Several fork-and-join methods have been developed. For instance

Gaussian approximations to sub-posteriors [Neiswanger et al., 2013]

Kernel density averaging [Neiswanger et al., 2013] Consensus Monte Carlo [Scott et al., 2016]

A primary weakness of these methods is that the recombination is inexact in general and involve approximations However, Monte Carlo Fusion [Dai et al., 2019] is exact

Several fork-and-join methods have been developed. For instance

Gaussian approximations to sub-posteriors [Neiswanger et al., 2013]

Kernel density averaging [Neiswanger et al., 2013]

Consensus Monte Carlo [Scott et al., 2016]

A primary weakness of these methods is that the recombination is inexact in general and involve approximations

However, Monte Carlo Fusion [Dai et al., 2019] is exact

Several fork-and-join methods have been developed. For instance

Gaussian approximations to sub-posteriors [Neiswanger et al., 2013]

Kernel density averaging [Neiswanger et al., 2013] Consensus Monte Carlo [Scott et al., 2016]

A primary weakness of these methods is that the recombination is inexact in general and involve approximations However, Monte Carlo Fusion [Dai et al., 2019] is exact

Constructing a rejection sampler - An Extended Target

Proposition

Suppose that $p_c(y | x^{(c)})$ is the transition density of a stochastic process with stationary distribution $p_c^2(x)$. The (C+1) d-dimensional (fusion) density proportional to the integrable function

$$g \ x^{(1)}; \dots; x^{(C)}; y \ / \ \sum_{c=1}^{4C} \ f_c^2 \ x^{(c)} \ p_c \ y \ j \ x^{(c)} \ \frac{1}{f_c(y)}$$

admits the marginal density for y.

Main idea: If we can sample from, then we can can obtain a draw from the fusion densityy()

Constructing a rejection sampler

Constructing a rejection sampler - An Extended Target

Proposition

Suppose that $p_c(y \mid x^{(c)})$ is the transition density of a stochastic process with stationary distribution $p_c^2(x)$. The (C+1) d-dimensional (fusion) density proportional to the integrable function

$$g \ x^{(1)}; \dots; x^{(C)}; y \ / \ \sum_{c=1}^{4C} \ f_c^2 \ x^{(c)} \ p_c \ y \ j \ x^{(c)} \ \frac{1}{f_c(y)}$$

admits the marginal density for y.

Main idea: If we can sample from, then we can can obtain a draw from the fusion density ()

There are many possible choices for (y j x)

Let $p_c(y j x) \coloneqq p_{T;c}(y j x)$, the transition density of the d-dimensional (double) Langevin (DL) di usion processes $X_t^{(c)}$ for $c = 1; \ldots; C$, from x to y for a pre-de ned time T > 0 given by

$$dX_t^{(c)} = {}_{c}r logf_c x_t^{(c)} dt + {}_{c}^{1=2}dW_t^{(c)}$$

 $W_t^{(c)}$ is d-dimensional Brownian motion $_c$ is the pre-conditioning matrix associated with sub-posterior f_c r is the gradient operator ovex Has stationary distribution $f_c^2(x)$

There are many possible choices $p_{Q}(y \mid x)$ Let $p_c(y \mid x) := p_{T;c}(y \mid x)$, the transition density of the d-dimensional (double) Langevin (DL) di usion processes $X_t^{(c)}$ for c = 1; ...; C, from x to y for a pre-de ned time T > 0 given by

$$dX_t^{(c)} = {}_{c}r logf_c x_t^{(c)} dt + {}_{c}^{1=2}dW_t^{(c)}$$

W_t^(c) is d-dimensional Brownian motion
_c is the pre-conditioning matrix associated with sub-posterior
f_c

r is the gradient operator over

r is the gradient operator ovex Has stationary distribution $f_c^2(x)$

There are many possible choices $p_{Q}(y \mid x)$ Let $p_c(y \mid x) := p_{T;c}(y \mid x)$, the transition density of the d-dimensional (double) Langevin (DL) di usion processes $X_t^{(c)}$ for $c = 1; \ldots; C$, from x to y for a pre-de ned time T > 0 given by

$$dX_t^{(c)} = {}_{c}r logf_c x_t^{(c)} dt + {}_{c}^{1=2}dW_t^{(c)}$$

W_t^(c) is d-dimensional Brownian motion _c is the pre-conditioning matrix associated with sub-posterior f_c

r is the gradient operator ovex Has stationary distribution $f_c^2(x)$

Extended Target Density:

$$g \ x^{(1:C)}; y \ / \ \sum_{c=1}^{4C} \ f_c^{\ 2} \ x^{(c)} \ p_c \ y j x^{(c)} \ \frac{1}{f_c(y)}$$

Extended Target Density:

g
$$x^{(1:C)}; y$$
 / $\int_{c=1}^{C} f_c^2 x^{(c)} p_c y j x^{(c)} \frac{1}{f_c(y)}$

Consider the proposal density for the extended targety:

h
$$x^{(1:C)}; y$$
 / $\int_{c=1}^{\sqrt{C}} f_c x^{(c)} i \exp \frac{1}{2} (y + x)^{|-1|} (y + x)$

T is an arbitrary positive constant

Constructing a rejection sampler

Rejection Sampling (Double Langevin Approach)

Simulation fromh is easy:

$$h(x^{(1:C)};y) / \int_{c=1}^{yC} f_c x^{(c)} i \exp \frac{1}{2} (y x)^{|-1} (y x)$$

- 1. Simulate $x^{(c)}$ $f_c(x)$ independently
- 2. Simulatey N (x;)

Simulation fromh is easy:

$$h(x^{(1:C)};y) / \int_{c=1}^{\sqrt{c}} f_c x^{(c)} = \exp \left[\frac{1}{2} (y - x)^{|-1|} (y - x) \right]$$

- 1. Simulate $x^{(c)}$ $f_c(x)$ independently
- 2. Simulatey N (x;)

Simulation fromh is easy:

$$h(x^{(1:C)};y) / \int_{c=1}^{yC} f_c x^{(c)} i \exp \frac{1}{2} (y x)^{|-1} (y x)$$

- 1. Simulate $x^{(c)}$ $f_c(x)$ independently
- 2. Simulatey N (x;)

Rejection Sampling - acceptance probability

Acceptance probability:

$$\frac{g(x^{(1)};\ldots;x^{(C)};y)}{h(x^{(1)};\ldots;x^{(C)};y)} \,/ \qquad Q$$

where

$$\begin{cases} 8 & \text{n} & \text{P}_{C_{c=1}} & \frac{(* - x^{(c)})^{|_{C_{c}}} (* - x^{(c)})}{2T} \\ \end{cases}$$

$$\underset{\sim}{\not} Q(x^{(1:C)};y) \coloneqq Q_{\substack{C\\c=1}} \xrightarrow{E_{W_c}} \underset{exp}{h} \xrightarrow{n} R_T \xrightarrow{c} x_t^{(c)} \xrightarrow{c} x_t^{(c)}$$

where W c denotes the law of a Brownian bridge $f x_t^{(c)}$; f = [0; t]g with f = [0; t]g with f = [0; t]g and f = [0; t]g and

Rejection Sampling - acceptance probability

Acceptance probability:

$$\frac{g(x^{(1)}; ...; x^{(C)}; y)}{h(x^{(1)}; ...; x^{(C)}; y)} / \qquad Q$$

where

8
$$(x^{(1:C)}) = exp^{n} P_{C = 1} \frac{(x - x^{(c)})^{-1} e^{1}(x - x^{(c)})}{2T}^{0}$$

$$\label{eq:Q} \S_{Q(x^{(1:C)};y)} \coloneqq {Q_{\substack{C\\c=1}}} \ E_{W_c} \ \exp \qquad {R_T\\0} \qquad {}_{c} \ x_t^{(c)} \qquad {}_{c} \ dt$$

where W $_{c}$ denotes the law of a Brownian bridge f $x_{t}^{(c)}$; t 2 [0; t]g with $x_{0}^{(c)} := x^{(c)}$ and $x_{T}^{(c)} := y$ and covariance matrix $_{c}$

Q Acceptance Probability

$$Q \coloneqq \bigvee_{c=1}^{C} E_{W_c} \quad exp \qquad \begin{matrix} Z_T \\ & & \\ & c \end{matrix} \quad x_t^{(c)} \qquad \quad c \quad dt$$

where

$$_{c}(x) = \frac{1}{2} \quad r \quad logf_{c}(x)^{|} \quad _{c}r \quad logf_{c}(x) + \underbrace{\begin{array}{cc} X^{d} \\ \\ k=1 \end{array}}_{c;kk} \frac{@r \quad logf_{c}(x)}{@k_{k}}$$

 $_{c}$ are constants such that for alk, $_{c}(x)$ $_{c}$ for c 2 f 1; :::; Cg

Events of probabilityQ can be simulated using Poisson thinning and methodology called Path-space Rejection Sampling (PSRS) or the Exact Algorithm (Beskos et al. [2005], Beskos et al. [2006], Pollock et al. [2016])

Interpretation

Correct a simple weighted averageof sub-posterior values to a Monte Carlo draw from (x) with acceptance probability Q

Proposal:

$$h \ x^{(1:C)}; y \ / \ \int\limits_{c=1}^{\sqrt{c}} f_c \ x^{(c)} \stackrel{i}{=} \exp \ \frac{1}{2} (y \ x)^{|} \ ^{1}(y \ x)$$

Accepty as a draw from fusion density with probability:

$$\frac{g(x^{(1)}; :::; x^{(C)}; y)}{h(x^{(1)}; :::; x^{(C)}; y)} / \qquad Q$$

- 1. Simulatex^(c) $f_c(x)$ and $y \in N$ (x;)
- 2. Accepty with probability Q

Proposal:

h
$$x^{(1:C)}; y$$
 / $\int_{c=1}^{\sqrt{C}} f_c x^{(c)} i \exp \frac{1}{2} (y - x_i)^{-1} (y - x_i)$

Accepty as a draw from fusion density with probability:

$$\frac{g(x^{(1)}; ...; x^{(C)}; y)}{h(x^{(1)}; ...; x^{(C)}; y)} / C$$

- 1. Simulatex^(c) $f_c(x)$ and $y \in N$ (x;)
- 2. Accepty with probability Q

Proposal:

h
$$x^{(1:C)}; y$$
 / $\int_{c=1}^{\sqrt{C}} f_c x^{(c)} i \exp \frac{1}{2} (y - x_i)^{-1} (y - x_i)$

Accept y as a draw from fusion density with probability:

$$\frac{g(x^{(1)}; ...; x^{(C)}; y)}{h(x^{(1)}; ...; x^{(C)}; y)} / C$$

- 1. Simulatex^(c) $f_c(x)$ and y N (x;)
- Accepty with probability Q

Proposal:

h
$$x^{(1:C)}; y$$
 / $\int_{c=1}^{\sqrt{C}} f_c x^{(c)} i \exp \frac{1}{2} (y - x_i)^{-1} (y - x_i)$

Accepty as a draw from fusion density with probability:

$$\frac{g(x^{(1)}; ...; x^{(C)}; y)}{h(x^{(1)}; ...; x^{(C)}; y)} / \qquad Q$$

- 1. Simulatex^(c) $f_c(x)$ and y N (x;)
- 2. Accepty with probability Q

Density with light tails

```
Target: (x) / e^{-\frac{x^4}{2}}
Sub-posteriors f_c(x) / e^{-\frac{x^4}{8}} for c=1;:::; 4
N = 20;000
```

Mixture Gaussian

```
Target: (x) / 0:5N ( 5; 1) + 0:2N (6; 2) + 0:3N (12; 1:5)

Sub-posteriors f_c(x) / (x)<sup>1=4</sup> for c = 1;:::; 4

N = 20;000
```

Possible extensions to Monte Carlo Fusion

Hierarchical Monte Carlo Fusion

Recall: Fork-and-join

The fork-and-join approach:

Possible extensions to Monte Carlo Fusion
Hierarchical Monte Carlo Fusion

Hierarchical Monte Carlo Fusion

Solution: adopt a divide-and-conquer approach:

Possible extensions to Monte Carlo Fusion
Hierarchical Monte Carlo Fusion

Example

```
Target: (x) / e^{\frac{x^4}{2}}
Sub-posteriors f_c(x) = e^{\frac{x^4}{2C}} for c = 1; ...; C
```

Can apply Sequential Monte Carlo in the hierarchical fusion framework

Rejection sampling can be <mark>wasteful</mark>: large number of proposed samples are rejected

Motives the use of Sequential Importance Sampling / Resampling ideas

Replace the rejection sampling steps with importance sampling steps

Introduce resampling at the nodes if the ESS falls below some threshold

Can apply Sequential Monte Carlo in the hierarchical fusion framework

Rejection sampling can be wasteful: large number of proposed samples are rejected

Motives the use of Sequential Importance Sampling / Resampling ideas

Replace the rejection sampling steps with importance sampling steps

Introduce resampling at the nodes if the ESS falls below some threshold

Can apply Sequential Monte Carlo in the hierarchical fusion framework

Rejection sampling can be wasteful: large number of proposed samples are rejected

Motives the use of Sequential Importance Sampling / Resampling ideas

Replace the rejection sampling steps with importance sampling steps

Introduce resampling at the nodes if the ESS falls below some threshold

Can apply Sequential Monte Carlo in the hierarchical fusion framework

Rejection sampling can be wasteful: large number of proposed samples are rejected

Motives the use of Sequential Importance Sampling / Resampling ideas

Replace the rejection sampling steps with importance sampling steps

Introduce resampling at the nodes if the ESS falls below some threshold

Can apply Sequential Monte Carlo in the hierarchical fusion framework

Rejection sampling can be wasteful: large number of proposed samples are rejected

Motives the use of Sequential Importance Sampling / Resampling ideas

Replace the rejection sampling steps with importance sampling steps

Introduce resampling at the nodes if the ESS falls below some threshold

Can apply Sequential Monte Carlo in the hierarchical fusion framework

Rejection sampling can be wasteful: large number of proposed samples are rejected

Motives the use of Sequential Importance Sampling / Resampling ideas

Replace the rejection sampling steps with importance sampling steps

Introduce resampling at the nodes if the ESS falls below some threshold

Bayesian Fusion

Ongoing work by Dai, H., Pollock, M. and Roberts, G.O. Tailored to big data Bayesian problems

References

- Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):333–382.
- Beskos, A., Roberts, G. O., et al. (2005). Exact simulation of diffusions. *The Annals of Applied Probability*, 15(4):2422–2444.
- Dai, H., Pollock, M., and Roberts, G. (2019). Monte Carlo Fusion. Journal of Applied Probability, 56(1):174-191.
- Lindsten, F., Johansen, A. M., Naesseth, C. A., Kirkpatrick, B., Schön, T. B., Aston, J., and Bouchard-Côté, A. (2017). Divide-and-conquer with Sequential Monte Carlo. *Journal of Computational and Graphical Statistics*, 26(2):445–458.
- Neiswanger, W., Wang, C., and Xing, E. (2013). Asymptotically exact, embarrassingly parallel MCMC. arXiv preprint arXiv:1311.4780.
- Pollock, M., Johansen, A. M., Roberts, G. O., et al. (2016). On the exact and "-strong simulation of (jump) diffusions. Bernoulli, 22(2):794–856.
- Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch, R. E. (2016). Bayes and big data: The consensus Monte Carlo algorithm. *International Journal of Management Science and Engineering Management*, 11(2):78–88.